

PNMsoft Knowledge Base

Sequence Developer Guides

Authentication

Dec. 2013
Product Version 7.0 and above

© 2013 PNMsoft All Rights Reserved

This document, including any supporting materials, is owned by PNMsoft Ltd and/or its affiliates and is for the
sole use of the PNMsoft customers, PNMsoft official business partners, or other authorized recipients. This
document may contain information that is confidential, proprietary or otherwise legally protected, and it may
not be further copied, distributed or publicly displayed without the express written permission of PNMsoft Ltd.
or its affiliates.

PNMsoft UK 38 Clarendon Road Watford Hertfordshire WD17 1JJ

Tel: +44(0)192 381 3420 • Email: info@pnmsoft.com • Website: www.pnmsoft.com

TABLE OF CONTENTS

General Document Information ... 1

Purpose ... 1

Prerequisites .. 1

Overview .. 2

Steps Required Before Invoking the API .. 2

Authentication Providers .. 2
Authentication Types .. 3

Implementing Authentication in a Web Application 3

Authenticating Independently in your Code .. 4

Performing Authentication .. 4

Performing Impersonation .. 5
A Note About the .NET IPrincipal Object ... 5
An Example.. 6

Authentication www.pnmsoft.com

Page 1

General Document Information

Purpose

The purpose of this document is to enable Developers to establish authentication and
impersonation with Sequence via external systems, in order to invoke Sequence API functions.

Prerequisites

 Experience with .NET.
 Familiarity with Sequence API.
 Familiarity with the Sequence configuration files.

Authentication www.pnmsoft.com

Page 2

Overview

Sequence can be operated via its native Administration and Flowtime (Runtime) environments.
Alternatively, Sequence can be operated via its API. In order to invoke Sequence API via
external systems, you must first perform authentication with Sequence.

Steps Required Before Invoking the API

In order to invoke the API, the external system must first perform the following steps:

1. Authentication: authenticate itself with Sequence.
2. Impersonation: establish impersonation using the credentials provided in Authentication,

in order to run API code.
3. Invoke API methods.

.This guide will describe how to perform these steps.

Authentication Providers

Sequence performs Authentication according to a chain of registered authentication providers.
These are defined in the configuration file in the following section:

<sequence.engine>

 <authentication>

 <providers>

For example:

 <providers>

 <add
type="PNMsoft.Sequence.Security.WindowsAuthenticationProvider,
PNMsoft.Sequence.Runtime, Version=7.0.0.0, Culture=neutral,
PublicKeyToken=0a1b1b90c1d5dca1">

 </add>

 <add
type="PNMsoft.Sequence.Security.UsernameAuthenticationProvider,
PNMsoft.Sequence.Runtime, Version=7.0.0.0, Culture=neutral,
PublicKeyToken=0a1b1b90c1d5dca1">

 </add>

 </providers>

Sequence attempts to authenticate the first provider. If the authentication does not succeed,
then it moves on to the next one.

For example:

1. Windows authentication attempted and failed.

2. Username/Password authentication attempted and succeeded.

Authentication www.pnmsoft.com

Page 3

Authentication Types

Sequence supports the following authentication types:

 Windows Authentication - PNMsoft.Sequence.Security.WindowsAuthenticationProvider

 Username/Password - PNMsoft.Sequence.Security.UsernameAuthenticationProvider
 Claims Identity - PNMsoft.Sequence.Security.ClaimsIdentityAuthenticationProvider
 Membership (user management based on Microsoft membership provider) -

PNMsoft.Sequence.Security.MembershipAuthenticationProvider
 Anonymous - PNMsoft.Sequence.Security.AnonymousUserAuthenticationProvider

You can also write a Custom Authentication provider. You would need to add this Custom
provider to the configuration file.

Some authentication types may require additional configuration.

Implementing Authentication in a Web Application

Sequence includes an out-of-the-box HttpModule for Authentication and Impersonation, called:
SequenceAuthenticationModule.

SequenceAuthenticationModule takes care of all aspects of Authentication and Impersonation
for you.

SequenceAuthenticationModule is contained in the Sequence web.config file.

Depending on the mode of your IIS application pool, SequenceAuthenticationModule is
defined in a different section of web.config, as follows:

 If your IIS application uses classic application pool mode, SequenceAuthenticationModule
is in:

<system.web>

 <httpModules>

 If your IIS application uses integrated application pool mode,
SequenceAuthenticationModule is in:

<system.webServer>

 <Modules>

For example:

 <httpModules>

 <add name="SequenceAuthenticationModule"
type="PNMsoft.Sequence.Web.AuthenticationModule,
PNMsoft.Sequence.Web, Version=7.0.0.0, Culture=neutral,
PublicKeyToken=0a1a1b90c1c5dca1"/>

 </httpModules>

To get the current user (if you are using the SequenceAuthenticationModule):

1. In your code, add one of the following methods:

WorkflowRuntime.Engine.GetCurrentUserWithCheck()

SecurityManager.CurrentAuthenticated

Authentication www.pnmsoft.com

Page 4

Note: It is recommended not to manage the authentication independently, rather to
use the SequenceAuthenticationModule module. Only in specific cases where the
module is inappropriate, you can write custom code which manages authentication
and impersonation.

Authenticating Independently in your Code

While it is recommended to use SequenceAuthenticationModule for authentication, your
solution may require custom authentication (if SequenceAuthenticationModule does not cover
your scenario).

This section describes how to authenticate without using SequenceAuthenticationModule.

As noted in the Overview, you must perform both Authentication and Impersonation before you
can invoke the API.

Performing Authentication

To authenticate independently, you need to use the IAuthenticationService.

For example:

AuthenticatedUser user =
WorkflowRuntime.Engine.GetService<IAuthenticationService>().Authenticate();

Using this service, you can authenticate using one of the following options.

Authenticate()

Authenticate (string username, string password)

Authenticate(AuthenticationToken token)

Select one of the above options based on the Authentication type you are using, according to
the following guidelines:

1. Use Authenticate() for Authentication types which do not require additional
authentication parameters, for example:

 Windows

 Membership Provider

 Claims

In these cases, Sequence can take the parameters from the context in which the
application runs, and the provider can create the token independently.

2. Use Authenticate(string username, string password) for
Username/Password authentication, where you need to provide the username and
password as parameters.

3. Use Authenticate(AuthenticationToken token) for a custom authentication
type that requires a token (e.g. worker ID number) which must be passed as a parameter.

Note: AuthenticationToken is an object that contains the authentication
information that is used by the application pool.

As a result of the Authentication, an object of type AuthenticatedUser is returned. This
object contains data about the Sequence user.

Note: this user must already exist in the Sequence database.

Authentication www.pnmsoft.com

Page 5

Performing Impersonation

You use the SecurityManager object from PNMsoft.Sequence.Security namespace to perform
impersonation. The object that is returned is of type SecurityContext, that encapsulates
security-related data.

To perform independent impersonation:

1. Create a SecurityContext object.

2. Run API function(s).

3. Destroy the SecurityContext using the Dispose() function. (This is an important
security measure, otherwise you leave impersonation open).

Note: You can use the using statement to Open and Destroy the
SecurityContext.

See An Example below.

A Note About the .NET IPrincipal Object

In .NET, all code runs on a specific thread. It is possible to attach a Principal object to the
thread. Sequence code can run with or without attaching the SecurityContext object to the
thread.

You can use one of two methods defined on the SecurityManager object:

 CreateContext: Does not attach the IPrincipal object to the current thread.

 Impersonate: the IPrincipal object is attached to the current thread.

Note: the AuthenticatedUser implements IPrincipal interface.

For Example:
 Use this code when you want to attach user object to the current thread

AuthenticatedUser user =
WorkflowRuntime.Engine.GetService<IAuthenticationService>().Authenticate();
 using (SecurityContext securityContext =
SecurityManager.Impersonate(user))
{
 //add your API calls here
}

Else

 Use this code:

AuthenticatedUser user =
WorkflowRuntime.Engine.GetService<IAuthenticationService>().Authenticate();
 using (SecurityContext securityContext =
SecurityManager.CreateContext(user))
{
 //add your API calls her
}

Authentication www.pnmsoft.com

Page 6

An Example

You writing a webpage and you wish to invoke several Sequence API methods when the page
loads. In this case, you can create the security context at the beginning and destroy it at the
end using the Dispose() method, and you can place several API calls in the middle.

using System;

using System.Web.UI;

using PNMsoft.Sequence.Runtime;

using PNMsoft.Sequence.Security;

namespace SequenceEx.Security

{

 public class MyPage : Page

 {

 private SecurityContext securityContext;

 protected override void OnInit(EventArgs e)

 {

 AuthenticatedUser user =
WorkflowRuntime.Engine.GetService<IAuthenticationService>().Authenticate();

 this.securityContext = SecurityManager.Impersonate(user);

 base.OnInit(e);

 }

 protected override void OnPreRender(EventArgs e)

 {

 base.OnPreRender(e);

 }

 protected override void Render(HtmlTextWriter writer)

 {

 base.Render(writer);

 }

 public override void Dispose()

 {

 if (this.securityContext != null)

 {

 this.securityContext.Dispose();

 this.securityContext = null;

Authentication www.pnmsoft.com

Page 7

 }

 base.Dispose();

 }

 }

}

