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Abstract 
Estimating consumer surplus is challenging because it requires identification of the entire 
demand curve. We rely on Uber’s “surge” pricing algorithm and the richness of its individual 
level data to first estimate demand elasticities at several points along the demand curve.  We then 
use these elasticity estimates to estimate consumer surplus. Using almost 50 million individual-
level observations and a regression discontinuity design, we estimate that in 2015 the UberX 
service generated about $2.9 billion in consumer surplus in the four U.S. cities included in our 
analysis.  For each dollar spent by consumers, about $1.60 of consumer surplus is generated.  
Back-of-the-envelope calculations suggest that the overall consumer surplus generated by the 
UberX service in the United States in 2015 was $6.8 billion.  
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1. Introduction 
 
For over 250 years, economists have recognized the importance of consumer surplus when 
making welfare calculations.2  Consumer surplus (and the closely related concepts of equivalent 
variation and compensating variation) is a critical input to many economic policies, such as 
antitrust analysis, the valuation of non-market goods, and measuring the value of innovation 
(e.g., Williamson 1968, Willig 1976, Bresnahan 1986). 
 
In practice, however, obtaining convincing empirical estimates of consumer surplus has proven 
to be extremely challenging.   We typically observe only the equilibrium point that balances 
supply and demand.   Variations in that equilibrium across time and space are generally the result 
of a combination of supply-driven and demand-driven shocks and thus are of little use in this 
regard.  A large body of economic research focuses on demand estimation (see, for instance, 
Deaton 1986). The key to estimating demand elasticities is to isolate exogenous shifts in the 
supply curve, holding demand factors constant.  In recent years, a great deal of work has focused 
on the development of new techniques for generating demand estimates in differentiated product 
markets (Baker and Bresnahan 1988, Berry et al. 1995, Nevo 2000, Petrin 2002).3  This strand of 
the literature focuses on overcoming the data limitations that are often present in standard 
economic settings, such as the absence of individual level data, unobservable product 
characteristics, and unobservable consumer characteristics.  
 
Existing empirical explorations of demand almost always generate local estimates of demand 
elasticities. These elasticities describe how consumers are likely to respond to small variations 
around the equilibrium price. Local elasticities, however, are not sufficient for estimating 
consumer surplus.  To compute consumer surplus one needs to integrate the area under the 
demand curve, which requires knowledge of the quantity demanded for each possible price.  
Typically, there are no direct estimates of elasticities far from the equilibrium price, necessitating 
a strong functional form assumption (e.g., iso-elastic demand) to produce consumer surplus 
estimates.  
 
In this paper we exploit the remarkable richness of the data generated by Uber, and in particular 
its low-cost product UberX, to generate consumer surplus estimates that require less restrictive 
identifying assumptions than any other prior research that we are aware of.  

                                                
2 The concept of consumer surplus, or “utilite relativé,” was first introduced in 1844 by French engineer Jules 
Dupuit. Alfred Marshall later independently reintroduced and named the concept in his 1890 publication Principles 
of Economics (Houghton, 1958; Svoboda, 2008).  
3 In differentiated product markets such as those studied by Berry et al. (1995) and Nevo (2000), one needs not only 
instruments for price, but also instruments that shift market shares through a channel other than prices (Berry and 
Haile 2014).    
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UberX is an app-based service that algorithmically matches drivers to consumers seeking rides 
(see uber.com).4  A critical feature of Uber is that it uses real-time pricing (“surge” pricing) to 
equilibrate local, short-term supply and demand.  A consumer wishing to take a particular trip 
can face prices ranging from the base price (what we call the “no surge” or “1.0x” price) to five 
or more times higher, depending on local market conditions.  Importantly, we observe detailed 
information not only for every trip taken using Uber, but also, critically, when a consumer 
searches for a ride using Uber without ultimately deciding to make a request.  We, thus, observe 
the price offered to the consumer, and whether she accepts or rejects that offer.  This information 
is crucial in our strategy for estimating demand. 
  
If the degree of surge pricing faced by a consumer on a given trip were generated at random, 
then all that would be required to trace out a demand curve would be to compute the share of 
Uber searches culminating in a ride at each level of surge pricing.  With randomization, if 70 
percent of searches lead to a transaction at the base price, but only 63 percent of searches lead to 
trips when the price is ten percent higher (1.1x surge), then we could assume that people who 
received surge 1.0x would also have requested trips at a rate of 63 percent, had they been quoted 
the 1.1x price. This would imply that the elasticity of demand would be one on this part of the 
demand curve (i.e. a 10 percent reduction in the share of people who accept the offer--from a 
70% purchase rate to a 63% purchase rate--is associated with a 10 percent increase in price).5  
Similar comparisons of ride completion rates at higher prices would trace out demand over 
whatever range of prices consumers faced.  Combining these elasticity estimates with the actual 
quantity purchased at 1.0x surge yields the demand curve for customers offered 1.0x surge, as 
well as an associated consumer surplus.  
 
In practice, the surge price that consumers face is not random; it reflects local demand and 
supply conditions.  There is, however, a component of Uber pricing that is largely random from a 
consumer’s perspective. Uber calculates each surge price to an arbitrary number of decimal 
places, but consumers are presented with discrete price increments (e.g., the lowest surge price is 
1.2x, or 20 percent higher than the base price) to facilitate a simple, easy user experience.6 
Market conditions are nearly identical when the algorithm suggests a surge of 1.249x and when it 
                                                
4 The rampant growth of “peer-to-peer” transactions and the “sharing” economy have had a profound impact on 
many industries in recent years.  A burgeoning economic literature is devoted to this topic (e.g. Cramer (2016), 
Cullen and Farronato (2014), Einav et al. (2015), Fraiberger and Sundararajan (2015), Hall and Krueger (2015)). 
5 In this example, the 63 percent of consumers who demonstrated a willingness to pay of 1.1x, reveal that had they 
only been asked to pay the base price, they would have received a consumer surplus of at least 10 percent of that 
base price.  The 7 percent of customers who refuse to transact at 1.1x, by this same logic, reveal a consumer surplus 
when transacting at the base price that is less than 10 percent of the base price. 
6 For example, Uber might estimate that the appropriate multiplier is 1.61809, but for easy interpretation, they would 
charge the customer 1.6x. 
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suggests a surge of 1.251x, but in one case consumers face a 1.2x surge and in the other case 
they face a 1.3x surge.  This provides the opportunity for regression discontinuity (RD) analysis, 
which allows us to estimate local elasticities of demand across the full range of surge prices.7  A 
complicating factor in our analysis is that the expected wait time a consumer faces systematically 
changes at the price discontinuity.  We observe the expected wait time of the customer in our 
data, so we can control for this factor in our analysis.  Additionally, the expected wait time 
algorithm used by Uber is continuous, but is rounded to whole minutes when presented to 
customers.  This allows us to use an RD design for identifying the causal impact of expected wait 
time on purchases and thus to more convincingly purge any impact of wait time differences from 
our price elasticity estimates. 
 
Using a sample of nearly 50 million UberX consumer sessions, which represents the first 24 
weeks in 2015 from Uber’s four biggest U.S. markets, we estimate demand elasticities for Uber’s 
most used service (“UberX”).8  Empirically, three basic facts emerge.  First, our estimated 
demand elasticities are similar regardless of the sources of variation that we use in the estimation 
or the set of included controls, suggesting that our results are robust.  Second, demand is quite 
inelastic. Our methodology estimates a set of price elasticities, most of which are between -.4 
and -.6.  Third, the elasticity of demand varies somewhat (but perhaps less than expected) as a 
function of observable characteristics such as time of day, user experience with Uber, or the 
presence of close substitutes.   
 
These estimated Marshallian price elasticities form the basis of our consumer surplus 
calculations, but further assumptions are required.  To compute consumer surplus, one needs to 
know how consumers would have responded had they faced a higher price.  We do not directly 
observe this in the data.  Instead, what we observe is how price responsive consumers are when 
market conditions dictated a higher price.  The set of sessions with high surge prices may, 
however, differ systematically in their price responsiveness from those who see low surge.9  We 
deal with this complication in two ways.  First, we use propensity score methods to identify a 
subset of sessions that saw high surge prices, but whose observable characteristics (e.g., location, 
time of day, day of the week, and past usage of Uber) match the pool of sessions that face no 
surge.  Second, we redo our estimates eliminating from the sample all observations where there 
is a positive local demand shock.  The prices charged depend on the interplay of supply and 
                                                
7 Additionally, there are Uber business rules that sometimes cause prices to be far below what the surge algorithm 
recommends, allowing us also to analyze consumer behavior when the differences between the surge level and the 
surge generator are larger. 
8 The data were chosen in conjunction with Uber to be large enough to be representative, while not revealing 
information that may have more business sensitivity. 
9 Note that the same consumer opening the app under different circumstances may have different likelihoods of 
making a purchase and different sensitivities to price.  Thus, we focus on sessions as our unit of analysis, not 
individuals. 
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demand.  If the supply of drivers is low, prices can be high even though the number of requests 
in a given time and place are not out of the ordinary.  Price spikes driven by idiosyncratically 
low supply are likely to provide a better counterfactual than those triggered by unusually high 
demand.  Neither the propensity-score methods nor eliminating positive demand shocks 
materially affects the consumer surplus results.   
 
We obtain large estimates of the consumer surplus generated by UberX.  We compute the dollar 
value of consumer surplus from UberX rides taken in Uber’s four biggest U.S. markets in 2015 
(Chicago, Los Angeles, New York, and San Francisco) to be roughly $2.88 billion (SE=$122 
million) annually.  This is more than six times Uber’s revenues from UberX in those cities.10 In 
2015, these cities accounted for around 42.6% of UberX US gross bookings. If we assume that 
consumer surplus is proportional to gross bookings, we can extrapolate to an estimate of $6.76 
billion in consumer surplus from UberX in the U.S. The estimated consumer surplus is 
approximately 1.57 times as large as consumer expenditures on rides taken at base pricing.  That 
is, for each $1 spent on an UberX ride at 1.0x, we estimate the consumer receives $1.57 in extra 
surplus. These estimates of consumer surplus are large relative to the likely gains or losses 
experienced by taxi drivers as a consequence of Uber’s entrance into the market (Cramer 2016). 
  
From a public policy perspective, our consumer surplus estimates have two shortcomings.  First, 
they are derived from short-run demand elasticities, but any policy decision is likely to be 
interested in long-run consequences.11  Second, our estimates miss the consumer surplus 
associated with other ride-sharing products (both those offered by Uber and by other ride-sharing 
companies), as well as consumer benefit or harm resulting from responses of the taxi cab 
industry to Uber’s entry. We discuss in the concluding section what economic theory tells us 
about mapping from the numbers we are able to credibly estimate to the numbers that are of 
greatest economic interest. 
 
Although very different methodologically from our paper, Buchholz (2016) is the most similar 
prior work in terms of goals.  Buchholz (2016) estimates a dynamic spatial equilibrium model of 
New York City taxi cabs to assess the efficiency cost of existing regulations.  He concludes that 
efficient two-part tariff pricing and a directed matching technology would deliver welfare gains 
of over $2 billion annually in New York.12  Also in the basic spirit of our work in estimating 
                                                
10 This assumes a 25% commission of gross fares reserved for Uber.  This percentage likely overstates Uber’s actual 
average commission rate on the trips represented. 
11 The price variation we exploit is highly transient, and the set of competitors is fixed.  Thus, the appropriate 
interpretation of our estimate is roughly, if Uber’s system malfunctioned and Uber were therefore unavailable for a 
day, how much would consumers suffer? (The answer would be 1/365th of our annual consumer surplus number, or 
about $18 million.) 
12 More specific to the literature on taxis, there are a very rich set of papers that have attempted to understand the 
supply side of the taxi market (see Camerer et al., 1997; Farber, 2005, 2008, 2015; Crawford and Meng, 2011). 
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welfare impacts on consumers are Petrin (1999), Nevo (2000), Brynjolfsson et al. (2003), 
Goolsbee and Petrin (2004), Mortimer (2007), Crawford and Yurukoglu (2012), Quan and 
Williams (2014), and Crawford et al. (2015).     
       
The remainder of the paper is structured as follows.  Section 2 provides background on Uber.  
Section 3 describes the data and identification approaches underlying our estimates of demand 
elasticities.  Section 4 presents the estimation results along with a series of sensitivity analyses.  
Section 5 explores the set of assumptions necessary to translate the demand estimates into 
consumer surplus and the conclusions we reach based on these calculations.  Section 6 concludes 
with a discussion of the economic implications and interpretations of our findings.  
      
2. Background on Uber 
      
Uber is a technology company founded in 2009, which created a smart phone application that 
matches and handles payments between consumers seeking rides and Uber’s “driver-partners.” 
Uber’s service has proven extremely popular, growing dramatically in terms of both geography 
and volume.13 
 
To use Uber, a consumer downloads the app onto her smartphone for free.  When seeking a ride, 
the consumer opens the Uber app and sees something akin to the screenshot in Figure 1.  There is 
a map of the local area, a display of driver-partners in the area available to provide rides, and an 
estimate of how many minutes it will take the nearest vehicle to reach the consumer’s location.  
Uber offers a number of different products, as shown near the bottom of the screen in Figure 1. 
The user is able to scroll between those products.  If a consumer places an order, driver-partners 
are sequentially given the opportunity to accept that order until one does so.  That driver-partner 
then picks up the rider and drops her off at her desired location. Uber defines a user product-
session in which the user opens the app, culminating either in the user ordering a ride or electing 
not to order a ride.14  Throughout this interaction, Uber records all actions taken on the app as 
well as certain background information relevant to the transaction.  These data are collected and 
stored regardless of whether or not the session ends with a purchase. 
                                                
13 City governments have had varying reactions to Uber’s operations, which dramatically alter the status-quo of 
transportation. Historically, for-hire transportation has been heavily regulated, usually via a taxi medallion system 
(see Frankena and Pautler, 1984).  The incumbent taxi cab providers, not surprisingly, have been hostile to Uber’s 
presence. 
14 A session is Uber’s best attempt to identify a consumer’s decision as to whether or not to make a purchase. For 
simplicity with our focus on UberX, we use “session” to refer to a product-session of UberX interaction unless 
otherwise specified. Technically, if the rider interacts with another Uber product at a similar time, this creates a 
separate product-session. A session is defined as a period of, not necessarily continuous, use between opening the 
app to UberX and either requesting a ride or ceasing to use the app for a period of 30mins. Thus, multiple closings 
and openings of the app in a short period of time do not generate many sessions. The median elapsed time of a 
session is 31 seconds. 
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Uber offers several products, which differ in terms of the types and size of cars, whether the ride 
is shared with other passengers, and the price.  Our focus is on UberX, the core product that 
represented almost 80 percent of all Uber rides during the time period of our sample.  With 
UberX, a rider summons a driver-partner who drives her own private vehicle and delivers the 
rider to the desired location without stops.15    
 
Uber’s base pricing system has components similar to standard cab pricing systems in which 
each city and product has a fare defined by price per mile, price per minute, a fixed fee, and a 
minimum total fare.16  In contrast to regulated cabs, Uber also utilizes a dynamic pricing system, 
called surge pricing, on many of its products.17 Uber’s surge algorithm monitors rider demand 
and available driver supply and institutes a multiplier on the base price when demand outstrips 
supply at the base price.18 This pricing system helps increase supply at times of high demand, 
and allocate rides to riders who value them most highly (Hall et al. 2015).   
 
Around 21% of UberX sessions in our dataset have some surge price exceeding 1.0x.  Figure 2 
presents the observed distribution of UberX sessions in our data for surge prices greater than 
1.0x.  The number of sessions between 1.2x (the lowest surge) and 1.5x are roughly equally 
common.  1.5x is somewhat overrepresented due to less than perfect accuracy in excluding 
sessions where the surge price was altered by Uber business rules.  Beyond that point, the 
number of sessions decreases monotonically with the level of surge.  Roughly 4.1 percent of 
surge sessions involve surge levels at or above 3.0x; 0.65 percent involve a surge greater than or 
equal to 4.0x.  
 
Although consumers are only shown a limited number of discretized surge levels, the algorithm 
generates a continuous measure of surge (which we call the “surge generator” or “generator”). 
This proves to be extremely useful for our identification strategy.  Two customers who have 
nearly identical surge generators (i.e., face nearly identical market conditions), but who happen 
to be on opposite sides of a pre-defined cut-off, face discretely different surge prices. 
                                                
15 UberXL is identical to UberX, except that the requested vehicle must accommodate at least six passengers.  
UberBlack and UberSUV work just like UberX and UberXL respectively, except that the driver-partners are 
Transportation Charter Permit (TCP) licensed and the vehicles driven meet a higher set of standards.  UberPool 
differs from the products above in that multiple riders are picked up en route by the same driver-partner, increasing 
the expected travel time and changing the user experience. UberTaxi differs from the other products in that it only 
summons licensed taxi drivers in licensed taxis, and the fares match the regulated taxi fares in the city. 
16 During the period of this study, each rider is also charged a $1 Safe Ride Fee, since renamed to Booking Fee, used 
specifically for ensuring the safety of riders and driver-partners on the Uber system.  The Safe Ride Fee is not 
included in the base fare (and hence is unaffected by surge). An example fare can be found in Appendix 2. 
17 UberPool is priced according to a different system which is beyond the scope of this paper. 
18 Surge prices are always greater than or equal to 1.0, i.e. the price is never lowered below the base fare, even when 
market conditions suggest it should.  
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Figure 3 shows the frequency of surge by hour of the day and day of week for UberX, displayed 
as a heat map.  The darker the color, the greater the share of trips involving surge pricing.   Surge 
pricing is most likely to occur late at night (especially on weekends) and during the morning rush 
hour, but even at those times surge is invoked in less than half of the sessions.  Surge pricing is 
less tightly linked to intuitions about demand than might be naively expected.  This is because 
driver-partners seeking more revenue adjust their labor supply in response to predictable demand 
shocks.19  
     
3. Data, Identifying price elasticities, and estimation 
 
We focus our analysis on UberX because it is the only Uber product that has both substantial 
scale and frequent surge pricing, which is central to our identification strategy. Our primary data 
set covers all UberX sessions in Uber’s four largest U.S. markets (San Francisco, New York 
City, Chicago, and Los Angeles) over the period January 1, 2015 to June 17, 2015. 
 
Our unit of analysis is a customer session, a company-defined measure that captures a particular 
consumer trying to order a particular ride.  There are approximately 54 million UberX sessions in 
our raw data.  For each session, we observe the surge price, underlying surge generator (which 
the consumer does not see), Uber-defined geographic region, time and date, anonymized rider id, 
Uber’s prediction of expected wait time (consumers see wait time in minutes), product, and the 
ultimate decision of the rider whether to request a car.20  Uber has a variety of business rules in 
place that override the surge algorithm in certain cases, primarily to prevent riders and drivers 
from experiencing very sharp price changes. In our main analysis, we discard these rider 
sessions, which make up roughly 11.5% percent of the sample, leaving approximately 48 million 
observations in our base sample.21  Summary statistics for this sample are presented in Table 1.  
We present statistics for the entire sample (column 1), as well as for three mutually exclusive and 
exhaustive subsets of the data: rider sessions with baseline pricing, (i.e. surge equal to one, in 
column 2), moderate surge (surge between one and two, in column 3) and high surge (column 4).  
 

                                                
19 High surge prevalence in the early morning is consistent with compensating differentials for driver-partners who 
have higher disutility from working those hours (or perhaps associated with the clientele seeking late night rides).  
Also consistent with this hypothesis is that driver-partners earn more on average on weekends than weekdays (both 
because of higher surge and more rides per hour.)  There are some dimensions across which drivers cannot easily 
substitute, for example, across cities.  Substantial differences in surge persist along those dimensions.  For example, 
14.4 percent of all New York City sessions involve surge, compared to 24.7 percent of Chicago sessions. 
20 Our methodology treats a car request as a purchase. Although there are times where either the driver or the rider 
decides to subsequently to cancel the car, we do not consider these cases as meaningfully informing our 
interpretation of the rider’s decision to purchase. 
21 We will, however, use those excluded observations for supplementary analysis. 
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A number of patterns emerge in Table 1.  The entries in the top row highlight the wide range of 
prices that consumers are exposed to due to surge.  Relative to baseline prices in Column 2, the 
same trip costs a consumer roughly 50 percent more on average with moderate surge (Column 3) 
and is two and one half times more expensive on average when high surge is in effect (Column 
4).  Expected wait times are not highly correlated with surge.  Although surge kicks in when 
demand is high relative to supply (implying long expected waits), high surge reduces demand 
and increases supply, equilibrating wait times.  Purchase rates, shown in the third row, decline 
from 62 percent in Column 2 to 39 percent in Column 4 as surge rises.  In percentage terms, 
however, purchase rates decline less than prices rise.  This pattern foreshadows the consistently 
inelastic demand estimates found throughout the paper.   
 
The remaining rows of Table 1 describe the distribution of our observations across city, time of 
the day and week, by the number of Uber trips made by the consumer.  Our sample is split 
relatively equally across the four cities, with high-surge trips relatively less frequent in New 
York and more frequent in Chicago.  As shown in Figure 4 above, surge most frequently occurs 
during rush hour and during weekend “party” hours.  Most of the observations in our sample are 
associated with frequent Uber riders.  The bulk of our data comes from frequent users of the 
product (more than eight rides in the period), and these frequent users are overrepresented during 
high surge periods. 
 
Identifying Price Elasticities 
 
If surge prices were randomly assigned to sessions, then identification of price elasticities would 
be straightforward: a simple regression of purchases on price, properly specified, would produce 
unbiased estimates.  While we report such estimates for purposes of comparison, the surge varies 
systematically with observable factors (as shown in Table 1), and no doubt, with unobservable 
factors as well. 
 
Our identification approach exploits the discontinuous pricing induced by Uber’s business rules 
regarding surges.  As noted earlier, although Uber generates a continuous measure of surge, 
actual prices charged are limited to a discrete set of points: 1.0, 1.2, 1.3, …, 4.8, 4.9, etc.22 A 
surge generator value of 1.249 leads to a surge price of 1.2x whereas a value of 1.251 triggers a 
1.3x surge.  Thus, discrete pricing leads to discontinuous jumps in prices for sessions with 
arbitrarily small differences in the underlying demand and supply conditions that determine the 
surge generator calculation.  Using RD methods applied to small windows around these jump 

                                                
22 For reasons that are not completely clear to us, Uber does not employ a surge of 1.1x.  While surge multipliers in 
some unusual situations may rise above 5.0, we use only sessions at or below 5.0 in our analysis. 
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points, we hope to identify price variation that is more plausibly viewed as exogenous than other 
price fluctuations, which reflect a mix of demand and supply factors.  
 
Figures 4 provides a visual example of our identification strategy, showing how purchase rates 
vary as a function of the surge generator over the range 1.15 to 1.35.  The horizontal axis is the 
surge generator.  The vertical axis is the percent of all sessions that convert into purchases within 
each bucket.  Each point in the graph represents the aggregation of all observations falling into a 
particular generator bucket, with each bucket having a width of 0.0025.  The vertical line at 
1.250 represents the point at which price jumps discontinuously from 1.2x to 1.3x. To the left of 
that vertical line, all customers face a price of 1.2x; to the right of the line price is 1.3x.  Moving 
from left to right towards the vertical line in the figure, purchase rates rise slightly, before 
dropping sharply at the price discontinuity. To the right of the vertical line, purchase rates 
continue a slight positive trend.23  The purchase rate falls approximately 3 percent at the 
discontinuity; price rises by 8.3 percent (the percent difference between 1.2x and 1.3x), for an 
implied price elasticity of roughly -0.36 (i.e., -3/8.3).  
 
Figure 5 displays the relationship between purchase rates and price discontinuities across a 
broader range of surge values.  Once again, the surge generator is on the horizontal axis and the 
purchase rate is on the vertical axis.  Each bar in the figure aggregates all sessions within a .01 
surge generator window.  Red bars lie just to the left of price discontinuities; yellow bars are just 
to the right of price discontinuities.  All intermediate price ranges are shown in grey.  In each of 
the 13 cases, the red bars are higher than the adjacent yellow bars, indicating that purchase rates 
fall as price discontinuously jumps.  In contrast, at any given price level (the gray bars between a 
yellow and a red bar), purchase rates exhibit no obvious pattern of increase or decline. 
 
To estimate a demand curve, one needs to hold everything else constant, other than price. To test 
whether this is indeed the case at our surge-driven price discontinuities, we estimate equations of 
the form: 
 
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 =  𝛼 +  𝜃 ∗𝑊𝑖𝑛𝑑𝑜𝑤 ∗ 𝑃𝑜𝑠𝑡 + 𝛽! ∗𝑊𝑖𝑛𝑑𝑜𝑤 +   𝛽! ∗ 1 −𝑊𝑖𝑛𝑑𝑜𝑤 ∗ 𝑃𝑜𝑠𝑡 

+ 𝛽! ∗𝑊𝑎𝑖𝑡 + 𝛽! ∗ 1 − 𝑃𝑜𝑠𝑡 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 +  𝛽! ∗ 𝑃𝑜𝑠𝑡 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
+ 𝜀 

 
(1) 

 
 
 
 

                                                
23 The slight positive trend moving from left to right is not a consistent pattern over the range of surge generator 
levels. 
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where Outcome represents an outcome of interest (e.g. was a purchase made, was the session 
during rush hour, etc.). Window is an indicator as to whether the observation lies close to a price 
discontinuity, Post is an indicator taking the value of one when the observation is to the right of 
the price discontinuity, Wait is the expected wait time, Generator is the continuous measure of 
surge produced by the Uber algorithm.24   
 
Table 2 reports the results of these regressions for a wide range of outcomes.  Each row 
represents a separate regression on a different dependent variable.  We report only the key 
coefficient θ, which captures the average difference in the outcome variable just after a 
discontinuity versus just before (using a window on either side of the discontinuity of 0.01), 
controlling for other factors.  The first row corresponds to the request rate (i.e. the share of 
observations in which a purchase is made).  As would be expected given the results in Figures 4 
and 5, request rates exhibit a clear decline at the price threshold where the discontinuity occurs:  
(a coefficient of -.0201 with a t-statistic of 20).  Note, however, that expected wait times also 
drop discontinuously at the surge thresholds: customers wait an average of .129 minutes (i.e., 
approximately 8 seconds) less after the threshold.  This result is not surprising; it occurs 
mechanically as a consequence of purchases declining at the threshold as well as due to 
increased incentive for drivers to make pick-ups in this area. When fewer people make 
purchases, there are more open cars available to pick up other customers, reducing wait times.25  
Failure to take these differences in wait times into account will bias our price elasticities towards 
zero, since higher prices are correlated with lower wait times.  Empirically, we deal with this 
complication in two ways.  First, we control for expected wait times in some of our 
specifications.  Second, in other specifications we not only control for expected wait times, but 
also instrument for expected wait times to deal with concerns of endogeneity.  Conveniently, 
Uber’s measure of expected wait time is measured in seconds, but consumers are only shown 
wait times rounded to whole minutes.  Thus, we can exploit the sharp discontinuities in wait 
times displayed to consumers to identify their sensitivity to waiting, just like we use the price 
discontinuities to identify sensitivity to price.26  In other words, we identify the causal impact of 
longer expected wait times using only the variation in wait times that is generated by the sharp 
jumps that occur around the thresholds where reported wait times jump discretely. The t-statistic 
on our instrument in the first stage regression is around 20 (detail in Appendix: First-stage 
expected wait time regression). 
                                                
24 When our outcome is expected wait time, we exclude the control for wait time in the regression. 
25 It is also true that the supply of drivers responds positively to higher surge prices, but even without that behavioral 
response, we would expect to see wait times lower after the discontinuities. 
26 Uber primarily stores wait times as minutes. Accessing wait times in seconds turns out to be time consuming and 
difficult.  With substantial effort, we were able to pull two weeks of this data.  As it turns out, the estimated impact 
of longer wait times on purchase rates is virtually identical when estimated using OLS or when we instrument for 
wait time using discontinuities, so instrumenting has no discernable impact on either the coefficient on wait time in a 
price regression or on our price elasticity estimates. 
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In contrast to wait times, the other observable characteristics vary only weakly at the price 
thresholds, as would be expected.   
 
Estimating price elasticities 
 
In principle, we can estimate price elasticities simply using the observed discontinuities in 
purchase behavior around the price jumps.  We also estimate specifications that control for a 
range of observable characteristics that might influence demand.  We run a separate regression 
for each price discontinuity, which is identical to equation (1) above with purchase as the 
outcome, but with the addition of fixed effects for city and our eight time of the week indicators: 
 
𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 =  𝛼 +  𝜃 ∗𝑊𝑖𝑛𝑑𝑜𝑤 ∗ 𝑃𝑜𝑠𝑡 + 𝛽! ∗𝑊𝑖𝑛𝑑𝑜𝑤 +   𝛽! ∗ 1−𝑊𝑖𝑛𝑑𝑜𝑤

∗ 𝑃𝑜𝑠𝑡 + 𝛽! ∗𝑊𝑎𝑖𝑡 + 𝛽! ∗ 1− 𝑃𝑜𝑠𝑡 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 +  𝛽! ∗ 𝑃𝑜𝑠𝑡
∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 + 𝐹𝐸(𝑐𝑖𝑡𝑦)+ 𝐹𝐸(ℎ𝑜𝑢𝑟 𝑎𝑛𝑑 𝑑𝑎𝑦)+ 𝜀 

 
(2) 

 
where Purchase is an indicator variable for whether or not a session ends in a purchase, Window 
is an indicator as to whether the observation lies within 0.01 of a price discontinuity, Post is an 
indicator taking the value of one when the observation is to the right of the price discontinuity, 
Wait is the expected wait time, Generator is the continuous measure of surge produced by the 
Uber algorithm.  Fixed effects for city and our eight “Hour and day” categories are also 
included.  For each price discontinuity, we include all sessions that are quoted the price falling 
on either side of the discontinuity (e.g., for the price discontinuity between 1.5x and 1.6x surge 
pricing, all observations at 1.5x and 1.6x are included).  The price elasticities are identified only 
using the observations within the window around the discontinuity; the remaining observations 
are nonetheless useful for pinning down the other parameters estimated.  
 
The coefficient of interest is θ which captures the drop in purchase rates at the price 
discontinuity, controlling for other factors and allowing for a different linear trend in the 
generator on the two sides of the threshold.  To transform these values into elasticities, we use 
the definition of a price elasticity:  
 
𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =  (%𝛥 𝑖𝑛 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦/%𝛥 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒)  = ((θ/𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑅𝑎𝑡𝑒)/
%𝛥 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒)  
 

(3) 
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where Purchase Rate is the share of sessions that result in purchases at a given price.  Since the 
purchase rate and percent change in price are directly observed in the data, there is a direct 
mapping between 𝜃 and the price elasticity. 
 
Table 3 presents these elasticity estimates.  Each row in the table corresponds to a different 
surge-driven price discontinuity.27  For instance, the first row reflects the discontinuity where 
prices jump from 1.0x to 1.2x; the second row is the jump from 1.2x to 1.3x.  At higher surge 
levels, we have fewer observations and consequently our estimates become less precise.  
Therefore, we report pooled estimates for all discontinuities from 1.9 to 2.3, 2.4 to 3.0 and 3.1 to 
5.028 At these higher surge levels, we generate separate estimates around each discontinuity, and 
then we present an inverse variance-weighted average of the estimates.  Each column in Table 3 
corresponds to a different specification.  For purposes of comparison, Column 1 reports naive 
results from regressing quantity on price, ignoring the obvious simultaneity between those two 
variables, i.e. Column 1 does not exploit the RD identification strategy used in all of the 
remaining columns.  Column 2 shows the results from our RD approach, absent any other 
controls. Columns 3 adds expected wait time as a control.  Column 4 instruments for expected 
wait time.29  Column 5 adds controls for time of week and city as controls to the specification in 
Column 4.  
 
Three notable patterns emerge in Table 3.  The first pattern is that there is little systematic 
change in the coefficients as controls are introduced or from instrumenting for expected wait 
time. At low surge levels (e.g., up to 1.5x), estimates that use all the variation in the data (column 
1) are on average slightly smaller in absolute magnitude than those identified only off of the 
price discontinuities (column 1 versus column 2).  Controlling for expected wait time also 
slightly increases the estimates (column 3 versus column 2).  Instrumenting for wait time and 
adding other controls (columns 4 and 5) has little impact on the coefficients compared with RD 
estimates that add expected wait time as a control (Column 3).  The second striking pattern in the 
table is the degree to which demand is price inelastic along the length of the demand curve.  Of 
the fifty price elasticities estimated in the table, only three carry a coefficient greater than one in 
                                                
27 Note that our specification differs somewhat from the standard setting in which price, rather than degree of surge, 
would be the right-hand-side variable.  Since surge is proportional to the fare absent surge, the longer the trip, the 
greater the dollar increase in the fare as surge increases.  There are also differences in base fares per mile across 
cities in the sample.  Thus, the elasticity estimates we report here represent a mixture across these various types of 
trips. We explore the impact on elasticities and consumer surplus of treating cities as distinct markets below. 
28 The particular groupings of the elasticity estimates do not materially impact our conclusions. 
29 As noted earlier, because it is extremely labor intensive to retrieve the continuous measure of expected wait time, 
we were only able to access two weeks worth of those data.  This continuous measure of wait time is our instrument 
for the discrete version that is seen by customers.  Consequently, we estimate the first stage equation for expected 
wait times only in that subset of the data and then impose that coefficient on the full sample using a two-step 
procedure. Columns 4 and 5 thus are estimated using all of the observations in the data.    
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absolute value. The median point estimate is -0.51; the mean point estimate is -0.57.  The third 
pattern in the table is that elasticities are quite precisely estimated at low prices, but become less 
precise at higher prices, because there are many more observations at low prices and % price 
changes are much larger.  
 
Table 4 explores how the estimated price elasticities vary across subsets of the data.  To facilitate 
comparisons across subgroups, we compute a single price elasticity estimate that is an inverse 
variance-weighted average of the estimates reported in Column 5 of Table 3 The top row of 
Table 4 reflects the whole sample (i.e. all the data in Table 3), for which we find a demand 
elasticity of -0.55 (se=.02).  The next four rows of the table report elasticities separately for the 
four cities in our sample.  Interestingly, demand is estimated to be substantially less elastic in 
Los Angeles (-0.33, se=.05) than in the other three cities.  The next eight rows of the table 
partition the hours of the week into eight mutually exclusive and collectively exhaustive 
categories.30   We observe little variation in price elasticity along this dimension.  Demand is 
estimated to be most elastic during the day on weekends (-0.66, se=0.05) and least elastic during 
non-rush hour times of the day on weekdays (-0.46, se=0.06).  When we divide consumers by 
prior experience with Uber, the more frequent users (e.g., those taking more than 3 rides in a 
period) are the most elastic.  
 
4. Turning price elasticities into consumer surplus estimates 
 
Armed with price elasticity estimates at various points along the demand curve, in this section 
we describe our methodology for mapping these into consumer surplus.  We first carry out that 
mapping and ignore the fact that the estimates provided by the data are not precisely the 
estimates we require.  This gives us a baseline, but potentially biased, estimate.  We then 
consider three potential problems with our approach, present approaches to dealing with those 
problems, and make conjectures regarding the likely sign and size of the bias caused by these 
data shortcomings. 
 
Measuring consumer surplus 
   
Transforming price elasticity estimates into an overall measure of consumer surplus requires 
additional assumptions.  A thought experiment is helpful in this regard.  Consider first the set of 
transactions that took place with no surge.  To estimate consumer surplus via price changes, we 
would want to offer a menu of prices, identifying the price at which the consumer becomes 
indifferent to making the purchase, holding everything else constant. The sum of the differences 
between that willingness to pay and the price the consumer pays is the consumer surplus 
                                                
30 The details of this time grouping are described in Appendix 1. 
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associated with those transactions.  One would then carry out the same exercise for the 
transactions done at 1.2x surge, but using 1.2x as the base price, and so on, for each transacted 
price.  The sum of these calculations would be total consumer surplus from UberX.31   
 
What we actually observe in the data differs from this idealized thought experiment in at least 
three ways.  First, we can only use our RD design to measure price elasticities at a handful of 
discrete points.  Second, the price elasticities we see are derived from the population of sessions 
that appear near the threshold of the price change.  That population of sessions is not necessarily 
the same as the population of sessions exposed to other prices.  For instance, surge pricing is 
more common during rush hours and late at night; the willingness to pay for an Uber ride may 
vary systematically over the course of the day.  Third, in the thought experiment above, 
everything else is held constant as prices change.  In reality, other demand determinants like the 
availability of taxis might differ between low surge and high surge situations. 
 
We explore each of those potential problems below, but for the time being we start by simply 
assuming them away to generate a first pass estimate.  For our first-pass estimates, with respect 
to a changing composition of sessions as surge changes and the possibility that outside options 
might also change, we begin by assuming those two concerns are unimportant, simply using the 
estimated elasticities from Table 2 and assuming that these elasticities are unbiased.  To deal 
with discrete elasticity estimates, we follow the obvious path of assuming that the locally 
estimated elasticities also apply nearby.  For instance, although our RD price elasticity going 
from 1.2x to 1.3x is identified off of variation from observations with generators between 1.24x 
and 1.26x, we will assume the same elasticity holds for sessions ranging from 1.20x to 1.30x.   
As noted above, we revisit these concerns below after explaining our basic methodology. 
 
Estimates using the basic methodology  
 
Our basic methodology is straightforward.  We start with the set of sessions who made a 
purchase at 1.0x surge.  Assuming that the relevant price elasticity for this group at 1.2x surge is 
the price elasticity estimated using RD and reported in Figure 3, we compute the number of 
sessions who would have continued to buy at 1.2x surge.  Multiplying the price difference (20 
percent) by the average fare actually paid ($13.3) multiplied by the quantity willing to pay 1.2x 
(in this case, 104MM trips) yields an estimate of the amount of consumer surplus generated up to 
the price 1.2x for those who paid 1.0x.  Starting at that price and quantity, we then carry out an 
                                                
31 Note that there are sessions who are only offered, say, 1.5x surge by Uber, who do not transact at that 
price, but would have made a purchase had they been offered, say, 1.2x surge.  These individuals are 
(rightly) ignored in the consumer surplus calculation because they didn’t transact and thus received no 
consumer surplus from Uber.  These individuals might, however, be of interest in the creation of 
hypothetical counterfactuals had Uber priced differently.  
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analogous calculation moving between 1.2x and 1.3x.  That yields the consumer surplus for the 
same set of sessions, but associated with the consumer willingness to pay between 1.2x and 1.3x.  
We repeat that process until we reach 4.8x.32  Beyond that point, where we have no elasticity 
estimates, we make the most conservative assumption, namely that no consumer is willing to pay 
above 4.9x.33  Summing all of these surplus estimates yields the consumer surplus for sessions 
who faced 1.0x pricing.  Figure 6 displays the outcome of this first step in the exercise visually. 
 
We then repeat the exact same process outlined in the previous paragraph, but using sessions 
where a purchase was actually made at 1.2x (instead of 1.0x in the previous paragraph).  Given 
the simplifying assumptions of our basic methodology, these sessions have the same price 
elasticities and thus an identically shaped demand curve, but they paid 1.2x, so their consumer 
surplus starts only at that point.  The same approach is used for those who paid 1.3x, 1.4x, …, up 
to 4.9x.   
 
Carrying out this exercise, we can extrapolate our estimates in these four cities from the first 24 
weeks of 2015 using volume figures from all of 2015 to reach an overall consumer surplus 
estimate of $2.88 billion34, with a bootstrapped standard error estimate of $122 million. If we 
assume that consumer surplus per trip in our sample (the first 24 weeks of 2015 for four large 
cities) is typical for the broader set of UberX consumers, than our estimates imply that UberX 
generated $6.76 billion in consumer surplus in the United States in 2015.  We now turn our 
attention to possible biases induced by the simplifying assumptions made above in estimating 
consumer surplus.   
 
Sensitivity of the results to incorporating continuous elasticity estimates 
 
Our basic methodology above assumes a functional form for the elasticities that is linear with 
jumps at the RD points.  A more nuanced approach predicts the elasticity at each point along the 
surge generator by fitting a curve using a flexible functional form.  Doing this using a fifth-order 
polynomial yields consumer surplus estimates that are generally similar to those presented 
above.  The two curves are nearly identical, and the high order polynomial would imply an 
estimate of 1.1% less consumer surplus than our preferred method. 
                                                
32 For CS, we inverse variance weight the less precise estimates created at high surge as described in the elasticity 
section.  
33 If instead, we assume that the price elasticity associated with our highest level of surge holds beyond that point, 
our estimate of consumer surplus increases 34 percent. 
34 As noted in Table 2, different cities have different elasticities. If, instead of applying the blended elasticities to all 
fares, we apply each city’s elasticities to the fares from that city and then sum the consumer surplus, we arrive at an 
estimate of $2.68B, implying $1.46 of consumer surplus per dollar of fare. A further analysis would be to do a 
similar sensitivity analysis grouping by rides with a similar fare, rather than by city, but this analysis is not feasible 
with current data availability. 
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Sensitivity of the results to the possibility that the composition of the sessions changes over the 
surge distribution 
 
As reported in Table 1 earlier in the paper, there are observable dimensions along which sessions 
systematically differ with the degree of surge.  For example, the average surge at 1am on 
Saturday night is meaningfully higher than the average during the middle of the work day.  The 
primary concern surrounding observable differences in the sample as a function of surge is that 
the price elasticities might vary along these dimensions.  
 
We adopt two different approaches to deal with this issue.  Our first approach is to use matching 
techniques to reweight the data so that the observable characteristics at a particular surge level 
match as closely as possible to the baseline population we are interested in.  Say, for instance, we 
want to construct a counterfactual in which the set of sessions used to estimate the price elasticity 
at 1.5x mirrors the observable characteristics of the sessions that actually saw 1.0x surge.  
 
To accomplish this matching on observables, we partition the data into 9,216 possible cells that 
represent the intersection of 144 geographic areas X 8 parts of the week X 4 measures of 
intensity of Uber use X 2 measures of whether the observation is before or after the calendar 
mid-point of our sample to capture possible changes over time given the rapid growth of Uber 
and the dynamic environment in which it operates.  We observe sessions in 7,627 of these cells.  
We compute the share of sessions falling into each bucket b when surge is 1.0x (call this 𝑆!.!!) 
and also the share in each of the buckets in the neighborhood of the 1.5x cutoff (call this 𝑆!.!!), 
where b indexes the buckets.  The resulting weight given to each observation in bucket b when 
estimating the price elasticity at the 1.5x cutoff is 𝑆!.!!/𝑆!.!!.  This ensures that the weighted 
number of observations per bucket in the vicinity of the 1.5 cutoff matches the number of 
observations in that same bucket at 1.0x surge.35 Figure 8 provides a comparison of the estimated 
demand curves from our basic methodology and those using the propensity score matching 
technique.  Until surge reaches 1.5x, the two curves look quite similar.  Beyond that point, the re-
weighted demand curve is substantially steeper.  This implies that users who face high surge, but 
who look like no-surge users, are more likely to convert than the typical high-surge user.  These 
results suggest that our basic approach understates consumer surplus by 10.4 percent.  
  
 
                                                
35 A complication arises, of course, when there are no observations in this example in a particular bucket around the 
1.5x threshold.  Our baseline procedure in this scenario is to estimate the elasticity without this bucket, which 
assumes that sessions in this bucket would have behaved like the sessions we actually observe near the 1.5x 
threshold.   
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Our second approach to addressing the problem that sessions that see high surge may 
systematically differ from those with low surge exploits the fact that pricing is a function of both 
demand and supply conditions.  Even when levels of demand are completely ordinary, 
consumers can face high prices if supply is unusually low.  Price changes caused by a shift in 
supply holding demand constant are likely to provide a more compelling counterfactual for 
constructing consumer surplus estimates than those driven by spikes in demand.36  We estimate 
separate regressions of the form below in data where each observation is a location in a particular 
five minute time period: 
 
𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =  (%𝛥 𝑖𝑛 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦/%𝛥 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒)  = ((θ/𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑅𝑎𝑡𝑒)/
%𝛥 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒)  

(4) 

 
where the dependent variable is the number of sessions initiated by consumers within a given 
five minute time period t in one of the 783 mutually exclusive and exhaustive geographic units in 
our sample.37  On the right hand side, we include as indicators the week of the year and the hour 
of the week (24 hours x 7 days per week).  The fitted value of this regression is the expected 
number of consumer sessions originating in a particular time and place.  Under the hypothesis 
that price elasticities may systematically differ during demand spikes, we then explore two 
different subsets of the data.  First, we exclude any observation where the observed number of 
sessions was greater than the number of sessions our model predicted.38 Second, we exclude 
observations in the top and bottom quartile of demand shocks, i.e. we keep only the middle half 
of the data.  As would be expected, Table 5 shows that high surge activity is greatly reduced in 
these two subsets.  Compared to the full data set, the mean level of surge in our two subsets is 
about half as high (1.14 versus roughly 1.07).  The effects are most extreme for high surge 
levels: our two subsets each comprise about half of the total observations, but capture less than 
20 percent of the surges above 2.0 and less than 10 percent of surges above 3.0.  It is rare, 
empirically, to achieve high surge levels based on supply shocks alone. 
 
Figure 9 compares our baseline demand estimates to those derived using these two subsets of the 
data.  Up until a surge of roughly 2.0x, the three curves look similar.  Beyond that point, but 
especially at the very highest surge levels, the estimates based on the subsets become extremely 

                                                
36 If the RD approach we use is valid, then demand shocks are a useful form of variation for identifying price 
elasticities.  The concern here is not the usual one of endogeneity.  Rather, the concern is that during demand spikes  
consumer preferences differ from typical demand periods.  In other words, using demand shocks we can get 
consistent estimates of the price sensitivity for the population facing those prices; that population may not, however, 
be representative of the typical consumer. 
37 We treat each update to the geography of a unit as a separate unit. The number of geographic units at a particular 
time is substantially smaller. 
38 Exploration of the most extreme positive demand shocks confirmed the unusual nature of the circumstances, e.g. 
rainstorms so severe that widespread flooding occurred, major concert and sporting events, etc. 
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noisy.  The implied consumer surplus using only below average demand shocks is 11.1% percent 
greater than the baseline: when we use the middle demand shocks only, the estimate is 5.9% 
percent greater. 
 
Sensitivity of the results to the possibility that other (mostly unobservable) demand determinants 
covary with the degree of surge 
 
The assumption underlying a demand curve is that all else is held constant as the price of the 
good in question changes.  We do not, in our setting, have good measures of the other demand 
determinants, such as the availability of taxi cabs, how hard it is raining, whether or not the 
person has an umbrella, or how costly it will be to the consumer if he or she get to their location 
ten minutes late.  Most likely, the paucity of outside options will make demand for Uber more 
inelastic.  If high surge is correlated with bad outside options for users, then biased elasticity 
estimates will likely lead us to overstate consumer surplus.39 
 
Although we cannot deal directly with this issue because we do not observe outside options in 
our data, we are able to address this potential confound in three ways.  The first approach is the 
standard one -- to control for an increasing number of dummies and interactions and to observe 
how this affects the estimates.  Additional controls had little impact on the coefficients in Table 
3.  Moreover, when we include dummies for the nearly 8,000 partitions described above, the 
estimated elasticities do not systematically change. 
 
The specific structure of the Uber surge algorithm and business rules provide two other ways to 
shed light on the possible biases induced by unobservable factors, which are very different from 
the approach of adding more and more controls.  The first of these exploits the continuous nature 
of Uber’s surge algorithm combined with the discontinuous pricing jumps.  The other exploits a 
business rule imposed by Uber that leads a subset of sessions to face prices that differ sharply 
from what the surge algorithm judges to be optimal.  We deal with these two different 
approaches in turn. 
   
Do users who experience worse market conditions, but the same prices, have different purchase 
likelihoods?  
 

                                                
39 It is possible, also, that the number and type of consumers who open the Uber app will be a function of 
outside options, further complicating this analysis.  If Uber users on the extensive margin are more price 
sensitive, and those users disproportionately appear when outside options are bad and surge is high, 
then the empirical bias could actually go in the other direction.  
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Market conditions differ across consumers who are quoted the same price.  Consumers quoted 
1.3x surge have underlying surge generator values ranging from 1.25 to 1.35.   To the extent that 
outside options are worse on average at high surge relative to low surge, that same pattern should 
be evident within these more narrow windows as well: the sessions at 1.35 should have worse 
outside options than those at 1.25.   And if this is the case, then one would expect a higher share 
of purchases by those at 1.35 than for those at 1.25.  The key to this analysis is that we see 
consumers with known differences in underlying supply/demand conditions, but who all face the 
same price.  In typical market settings, we do not get to observe this sort of variation, because 
prices equilibrate supply and demand at each point.  It arises in this case only because Uber holds 
prices fixed over a range of market conditions.  If prices are not held constant, we lose our ability 
to isolate the influence of outside options. 
 
To empirically test the concept in the preceding paragraph, we run regressions with an indicator 
for whether a purchase is made as the dependent variable, with indicators for each price level on 
the right hand side, along with Uber’s continuous measure of surge. Because of the inclusion of 
the price-level indicators, the identification of the continuous measure comes only from 
consumers who face different market conditions, but the same price.40, 41 The estimated 
coefficient on the continuous surge measure is 0.0104 (SE=0.00).  So, indeed, by this metric, it 
appears that outside options are slightly worse at higher levels of surge.  The magnitude of the 
effect is quite small.  The degradation of outside options moving from 1.0x to 3.0x would lead 
purchase rates, holding actual price constant, to increase by 2.08 percent, implying that our 
consumer surplus estimates above may be upward biased by roughly 3-4 percent.  
 
Do individuals presented with prices well below what is implied by demand conditions behave 
differently than others facing those prices? 
 
In the discussion above, we exploited relatively small differences in demand conditions across 
sessions offered the same price.  Uber business rules generate a different natural experiment that 
leads, on occasion, to consumers who face very different supply/demand conditions to face the 
same price.  Specifically, Uber limits the extent to which each consecutive update to the price 
can raise the surge price. At the beginning of a sharp demand/supply imbalance, the surge price 
can only increase by .5 in the first increase, .6 in the second increase, etc.  As a consequence, 
there are cases in which sessions see a price of 1.5x, but the surge generator characterizes the 
market setting as warranting a surge price of 2x, 3x, or even higher.  If the outside options at 

                                                
40 Essentially this regression tells us whether, in Figure 5, there is a systematic trend in the height of the gray bars 
that fall within each pair of red and yellow bars. 
41 For computational feasibility, this regression is estimated using all sessions with surge > 1 and 15% of sessions 
where surge = 1. For specification, see Appendix: Within surge level estimator specification. 
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higher surge are worse, then we would expect that purchase rates of sessions facing high surge 
conditions but artificially low prices of 1.5x will be higher than the purchase rates of sessions 
who see prices of 1.5x because that is what market conditions warrant. 
 
Figure 10 shows virtually no relationship between underlying demand conditions and purchase 
rates in those cases where price is artificially restricted by internal business rules.  While cases 
where the underlying model is changing prices rapidly may not perfectly represent standard 
scenarios, this does suggest that there is little or no bias from this channel in the consumer 
surplus estimates above.42  
 
4.  Conclusion 
 
This paper exploits the remarkable richness of Uber data to investigate the impact that Uber’s 
introduction has had on consumer welfare.  Our approach exploits the fact that Uber (1) has 
detailed session-level data, even when no purchase is made, (2) varies prices with market 
conditions, and (3) has business rules that generate sharp discontinuities in the prices that like 
customers face.  We find that consumer demand is inelastic, despite the existence of what would 
seem to be reasonably close substitutes (competitors, taxis, public transportation, driving one’s 
self).  Inelastic demand translates into large consumer surplus estimates: roughly $2.88 billion 
dollars in 2015 for the four cities in our sample, or $6.76 billion if extrapolated to all UberX trips 
in the U.S. for that year.  This estimate of consumer surplus is two times larger than the revenues 
received by driver-partners and six times greater than the revenue captured by Uber after the 
driver-partner’s share is removed. 
 
The consumer surplus estimates we generate correspond to a short-run demand curve because 
they are identified off of short-run price shocks.  One day’s worth of consumer surplus, by our 
estimates, is about $18 million.  If Uber were to unexpectedly disappear for a day, that is how 
much consumers would lose in surplus.  From a public policy perspective, however, our measure 
of consumer surplus generally would not be the estimate of greatest interest.  Economic theory 
helps one move from the number we estimate to the relevant elasticity for a given policy 
question. If, for instance, one wanted to know how consumers would be affected if Uber 
disappeared permanently, a long-run elasticity would be more appropriate, as consumers would 
find substitutes and other firms would enter the market.  If, however, one wanted to examine the 
impact of regulators banning ride-sharing altogether in an existing geography or delaying the 
entry of ride-sharing in a new market, then it is quite possible our estimates are far too low. The 
                                                
42 One caveat on this conclusion is that many more riders (relatively to available supply) are opening the app for 
high generators, causing higher ETAs. However, from 1.5x to 4.0x, a 166% increase in the estimated market price, 
ETAs only increase by ~26%. Given the coefficients on ETA in purchase regressions, this change in ETA would not 
have dramatic effects on purchase rates. 
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demand curve we estimate takes as given both competitor offerings and the presence of other 
Uber products. Without such products, demand for UberX would likely be more inelastic, thus 
giving rise to higher losses in consumer surplus than our estimation procedure would suggest. 
 
The emphasis in demand estimation over the last two decades has been on methodological 
advances that allow researchers to overcome the inherent limitations in the sorts of data that have 
typically been available.  While recognizing the immense contributions of that work, this paper 
also points to a second path forward: one in which better data are the key to deeper insights. 
Massive changes that are taking place in the economy in terms of the availability of transaction-
level data, the increased use of sophisticated pricing tools by firms, and the growing openness of 
firms to randomized experiments.  All of these forces point towards a future world in which data 
richness transforms our understanding of firms and consumers. 
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Figures 
 
Figure 1: Uber mobile application request screens 
 
 
                                              Panel A                                   Panel B 

 
Note: These figures illustrate what the Uber app looks like43 when a rider is requesting transportation. Panel A 
depicts the period preceding a request when users are asked to choose a product and set a pick-up location. Panel B 
depicts the confirmation screen where users are presented with a surge price when applicable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
43 These pictures are representative. In practice, there are variations across geography and time in terms of visual 
layout and exact product availability. 
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Figure 2: Distribution of surge price sessions for surge prices greater than 1.0x 

 
Note: This figure presents the number of observed UberX surge prices by surge level. Rides with no surge 
are excluded. Surge price notation is abbreviated. For example 1.2 in the graph corresponds to a surge 
price of 1.2x. 
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Figure 3: Heat map of the percent of sessions with surge by hour of the week 

 
Note: This figure shows the frequency of surges by hour of day and day of week for UberX. Darker 
rectangles identify times and days when riders are more likely to face surge pricing. Tuesday at 11am 
represents the time and day combination when surge pricing is least common, and Saturday at 11pm 
represents the time and day combination when surge pricing is most common.    
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Figure 4: Example of purchase rate changes at price discontinuity 

 
Note: This figure illustrates how purchase rates vary as a function of the surge generator over the range 
1.15x to 1.35x. The vertical line when the surge generator equals 1.25 identifies the point at which the 
surge price changes from 1.2x to 1.3x.  
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Figure 5: Request rate drops at pricing discontinuities 
 

 
Note: This figure illustrates how purchase rates vary as a function of the surge generator when the surge 
generator is less than 2.4x. Red bars identify all observations within .01 units to the left of a price 
discontinuity. Yellow bars identify all observations within .01 units to the right of a price discontinuity. 
All observations not within these windows are depicted in gray. 
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Figure 6: Visual representation of demand curve for transactions at 1.0x 

 
 
Note: This figure presents a piecewise linear demand curve with jumps at each price discontinuity. The 
curve is generated from the underlying elasticities estimated for each price discontinuity and for 
consumers facing transactions at 1.0x.  
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Figure 7: Comparison of 5th order smooth and linear segmentation demand curves  
 

 
 
Note: This figure presents two demand curves generated via different approaches. The blue demand curve 
(also presented in Figure 6) is piecewise linear with jumps at each price discontinuity while the green 
demand curve is derived by fitting a 5th order polynomial to the elasticity estimates. 
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Figure 8: Elasticity estimates with and without matching on observables 

 
 
Note: This figure presents two demand curves generated via different approaches. The blue demand curve 
(also presented in Figures 6 and 7) is linear with jumps at each price discontinuity while the green 
demand curve is based on elasticity estimates derived from data that were re-weighted to match the 
distribution of observables found at price 1.0x. 
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Figure 9: Estimated demand curves with and without extreme demand shocks 
 

 
 
Note: This figure presents three demand curves generated via different approaches. The blue demand 
curve (also presented in Figures 6, 7, and 8) is linear with jumps at the price discontinuities. The green 
demand curve restricts the analysis to observations where demand is below the median level, while the 
red demand curve restricts the analysis to observations where demand is around the median level. 
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Figure 10: Purchase rates as a function of underlying market conditions when the surge 
price is artificially restricted to 1.5x 

 
Note: This figure presents the purchase rate by surge generator where the actual price observed by the 
rider is constrained to be 1.5x. 
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Tables 
 
Table 1: Summary of sessions data  
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Table 3: Estimated Price Elasticities at various Points along the Demand Curve 
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Table 5: Comparison of surge with and without positive demand shocks included 
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Appendices 
 
Time category definitions 
 
Morning Rush = Monday - Friday, between 5:00am and 7:00am 
Weekday day = Monday - Friday, between 6:00am and 5:00pm (excluding both rush hours) 
Evening Rush = Monday - Friday, between 5:00pm and 7:00pm 
Weekday Evening = Monday - Friday, between 7:00pm to 11:00pm 
Weekend day = Saturday - Sunday, between 6:00am and 5:00pm 
Weekend Evening = Saturday - Sunday, between 6:00pm to 11:00pm 
Bar Hours = Thursday 11:00pm to 11:59pm,  Friday 12:00am to 3:00am and 11:00pm to 
11:59pm, Saturday 12:00am to 3:00am and 11:00pm to 11:59pm, Sunday 12:00am to 3:00am 
 
Example UberX fare 
 

 
Note: This figure presents the email riders receive upon completion of their ride which details the fare 

breakdown and additional information about the trip. 
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First stage expected wait time regression 
 
To estimate the effect of wait times on purchase rates we use the following two specifications, 
which mirror specifications (4) and (5) in Table 3: 
 

𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 ~ 𝛼 +   𝛽! ∗ 𝑆𝑢𝑟𝑔𝑒 +  𝛿! ∗𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 +  𝜀 
 
𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 ~ 𝛼 +   𝛽! ∗ 𝑆𝑢𝑟𝑔𝑒 +  𝛿! ∗𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 +  𝛽! ∗ 𝐹𝐸 𝑐𝑖𝑡𝑦 + 𝛽! ∗ 𝐹𝐸 𝑑𝑎𝑦 𝑎𝑛𝑑 ℎ𝑜𝑢𝑟

+   𝜀 
 
𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 ~ 𝛼+  𝛽1∗𝑆𝑢𝑟𝑔𝑒+ 𝜃2∗𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒+ 𝛽3∗𝐹𝐸𝑐𝑖𝑡𝑦+ 𝛽 
 
In both cases, we instrument for both Surge and Wait Time (measured in minutes). The surge 
instrument is equal to -.5 when the generator is below a threshold by less than .01, .5 when the 
generator is above a threshold by less than .01, and 0 otherwise. The wait time instrument 
follows the same pattern but uses a 3 second window (e.g. if the wait time estimate in seconds 
was only 2 seconds below the threshold for a higher Wait Time (in minutes), then the instrument 
would equal -.5. The coefficient of interest in the first specification, 𝛿! , is estimated to be -.0169 
(SE = .0008) and in the second specification 𝜃!is estimated to be  -.01724 (SE = .0447). 
 

 
Within surge level estimator specification 
 
Using the full range surges within the data, though sampling according to footnote 40, we 
estimate the following regression to understand the relationship between the surge generator and 
purchase rates, holding surge constant: 
 

𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 =  𝛼 +  𝜃 ∗ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 + 𝛽! ∗ 𝐹𝐸 𝑠𝑢𝑟𝑔𝑒 + 𝜀 
 
where θ is the coefficient of interest. 

 


