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A B S T R A C T

In the past decades, there has been a resurgence of public bike-sharing systems (BSSs). While it is claimed that
social and environmental benefits are associated with the implementation of BSSs, few empirical studies have
investigated the actual congestion reduction effect of BSSs on cities. To fill such gap, this paper aims to examine
whether the launch of BSSs can reduce citywide congestion. With a panel dataset of 96 urban areas in the US
from 2005 to 2014, we employed a difference-in-differences model with two-way fixed-effects panel regression.
The results suggested that the introduction of BSSs shows a significant mixed impact on congestion in general:
Larger cities get better off but richer cities get worse off. Such results are consistent with both subsample re-
gression with propensity score matching and different congestion measures. Post-hoc analysis reveals that BSSs
have a significant positive effect on reducing rush-hour congestion. Finally, implications, limitations, and future
work directions are offered

1. Introduction

A resurgence of (public) bike-sharing systems (BSSs) has been wit-
nessed around the world in the past decades. Although the idea of BSSs
has been around for almost half a century, it is only recently that such
systems have been strategized as sustainable transportation means
worldwide. For example, public bike docking stations, which were
hardly seen in Asia, Australia, and the Americas before 2008, have been
a recognizable feature in many cities nowadays (Midgley, 2011). In-
deed, the number of cities with a BSS has increased from 13 in 2004 to
855 as of 2014 (Fishman, 2016). While Europe continues pioneering
BSSs and has begun to adopt a new generation of BSSs, North America
is at an early stage but gains rapid growth of BSSs (Parkes et al., 2013).
Most common BSS can be described as a public program, which offers
bikes that can be picked up and returned at docking stations for free or
a small fee across an urban area. Trips using BSSs are usually of short
duration (e.g., 30 min). Contemporary internet and communication
technologies (ICTs) are typically embedded into BSSs to facilitate pro-
gram management and operation. For instance, smartphone apps are
developed and provided to the end-user to enable bike check-out and
return. The global positioning system (GPS) units are also adopted in
some BSSs to track bike locations. Geographic information system (GIS)
has also been introduced to monitor and allocate bikes across different
docking stations.

Although the explicit goals of the introduction of individual BSSs
may be different, BSSs are associated with social, environmental, and

health benefits, including but not limited to congestion and emission
reductions, flexible mobility, consumer financial savings, and positive
health outcomes (Midgley, 2011; Shaheen et al., 2010). Despite above-
mentioned benefits of BSS, there are at least two concerns about the
effectiveness of the BBS functionality from previous studies. First, cy-
cling itself rather than the BSS, in general, provides many of the ben-
efits above (Handy et al., 2014; Pucher and Buehler, 2012). Although
one of those objectives of BSSs is to promote cycling, such effect cannot
be taken for granted. The improvement of bike lanes and the increase
docking stations can also facilitate cycling activities. In other words, it
may not be necessarily through the launch of BSSs to achieve such
benefits. Second, the achievement of such benefits relies heavily on the
effectiveness of BSSs. For instance, the benefits of mobility, financial
savings, and health depend on the actual participation level of BSS
users. The social and environmental benefits of congestion and emission
reduction depend on the degree of modal shift from automobile to the
real use of BSSs. In other words, the launch of BSSs may not be suffi-
cient to achieve such positive outcomes. Although a few previous stu-
dies examined the environmental benefits associated with the BSS
(DeMaio, 2009), very few empirical studies examined the effect of
congestion reduction related to the introduction of the BSSs across the
US. In a recent study, Hamilton and Wichman (2017) found that BSSs
can reduce congestion at neighborhood scale in Washington, D.C.
Therefore, we aim to expand the scope of cities and provide a high-level
assessment of the relationship between the launch of BSSs and con-
gestion through a difference-in-differences (DID) model that examined
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the congestion over ten years (2005–2014) in 96 urban areas in the US.
To our knowledge, this is the first comprehensive study to examine

whether the launch of BSSs has an impact on congestion using DID.
With the DID method, the two-way fixed-effect panel regression results
indicate that the introduction of BSSs has significant mixed effects on
congestion. Our results are robust to subsample regression with pro-
pensity score matching and different measures for congestion. Post-hoc
analysis reveals BSSs have a significant positive impact on reducing
peak-hour congestion. Based on our findings, policy implications are
discussed. Next, we provide the background of BSSs and related lit-
erature in BSSs and congestion (Section 2) before introducing our data
and empirical strategies with difference-in-differences methods along
with robustness checks (Section 3). Section 4 presents the results. Fi-
nally, Section 5 discusses implications and limitations of this work.

2. Background and related work

In this section, we first briefly summarize the history of the four-
generations of BSSs. Second, we present a retrospective of empirical
works dealing with the benefits and concerns of BSSs.

2.1. A brief history of BSSs

The world's first BSS, namely the “White Bike”, was launched in
Amsterdam in 1965. It failed relatively quickly due to theft and vand-
alism, as those bikes were not equipped with any security features
(DeMaio, 2009). According to Parkes et al. (2013), this also marked the
first-generation of BSSs, which was characterized by no payment or
security functionalities. Established in Copenhagen in 1995, the second-
generation of BSSs was upgraded with a coin deposit system. However,
it still faced the problem of theft (DeMaio, 2009). The emergence and
prosperity of ICTs have enhanced the security functions and reduced
the management risk of BSSs by enabling the tracking of bicycles and
electronic payment systems. With fixed docking stations, ICT-enabled
BSSs are also recognized as the third-generation of BSSs (Shaheen et al.,
2013). Meanwhile, there is a growing public policy interest in the
benefits associated with BSSs (Midgley, 2011; Shaheen et al., 2010).
Consequently, practices on the third-generation of BSSs have recently
increased dramatically around the world. From 2004 to 2014, cities
with BSSs have surged from 13 to 855 (Fishman, 2016). Cities across
the globe have adopted different operation and pricing schemes. For
example, in Netherlands, there is a single nationwide bike sharing
program named “OV-fiets” with the requirement of membership sub-
scription and “OV-chipkaart”—a contactless smart card. In London,
Barclays and then Santander have sponsored the Transport for London
for its BSSs, in which the first 30-min is free with a payment of 2 GBP
access fee by credit card. In North America, a Montreal-based company
named PBSC Urban Solutions has provided integrated BSS solutions
(including bikes, pay stations, locking systems and smartphone appli-
cations) to a number of cities, such as Montreal and Toronto in Canada,
Boston, New York City and Washington, D.C. in US, and Guadalajara,
and Toluca in Mexico. In South America, municipal governments, such
as Buenos Aires, Argentina, Rio de Janeiro, Brazil, and Quito, Ecuador,
partner with local commercial firms to operate citywide BSSs. The
fourth-generation of BSSs is emerging now; it includes features such as
dockless stations, better integration with public transit systems, and
power assistance (Parkes et al., 2013). In June 2017, Urbo began to
operate dockless bike-sharing programs in Ireland and across Europe. In
China, the largest two BSS operators (i.e., Mobike and Ofo) have also
adopted dockless stations. While Mobike became the world's biggest
operator of BSSs in December 2016, Ofo had secured over 20 million
users by March 2017 (http://www.reuters.com/article/us-china-ofo-
fundraising-idUSKBN1683C9). For a more detailed overview of recent
developments in BSSs, please see the review papers conducted by
Fishman et al. (2013) and Fishman (2016).

2.2. Purported benefits of BSSs

There are a number of purported social, environmental, and health
benefits of BSSs. Shaheen et al. (2010) and Shaheen et al. (2013)
summarized as (1) congestion, emission, air pollution, and noise re-
ductions; (2) flexible mobility, transportation connection improvement;
(3) health promotion; and (4) consumer financial savings. Many of the
benefits mentioned above count on the assumption that the im-
plementation of BSSs has encouraged users to switch to BSSs for trips
previously made by car. However, empirical evidence has not reached a
consensus about whether such assumption is indeed based on reality
(Midgley, 2011).

The first strand of studies shows general agreement with the as-
sumption that the launch of BSSs has demonstrated an increase in
overall cycling activities in urban areas. For example, after launching
the BSSs, the percentage of trips made by bike grew by 1% from 2005 to
2007 in Barcelona, by 1.5% from 2001 to 2007 in Paris, and by 1.5%
from 1995 to 2006 in Lyon (Garcia-Palomares et al., 2012). Further-
more, a study of the BSS (OYBike) in London revealed that 40% of users
shifted from automobiles to the BSS (Noland and Ishaque, 2006).
However, Pucher et al. (2010) argued that such results were con-
founding because, despite the fact that cycling has increased in cities
since the introduction of the BSSs, the growth of bike mode share might
be because of the overall improvement of biking facilities. Nevertheless,
DeMaio (2009) explicitly showed that the BSS in Montreal had suc-
cessfully reduced greenhouse gas emissions by over 1300 tons since its
inception in 2009. A recent study by Hamilton and Wichman (2017)
revealed that BSSs reduced congestion of neighborhoods in Wa-
shington, D.C. Moreover, studies indicate that the increased cycling
behaviors due to the execution of BSSs are associated with significant
improvements in fitness and public health, such as reduced risks of
heart disease and cancer (Cavill et al., 2006; Rojas-Rueda et al., 2011;
Shaheen et al., 2010). In summary, most evidence that BSSs can in-
crease cycling behaviors is limited to individual cities.

The second strand of studies seems to reject the assumption that the
implementation of BSSs has encouraged users to switch to BSSs for trips
previously made by car for varied reasons. First, many users of BSSs or
bikes use them for leisure but not for commuting. For example, Noland
et al. (2011) conducted a statewide study and revealed that most people
use bikes for recreational purposes in New Jersey, USA. In other words,
BSSs promoted some trips which would not have been made in the
absence of BSSs (Ahillen et al., 2016). Furthermore, López-Valpuesta
and Sánchez-Braza (2016) found that in Seville, Spain, BSSs and private
bikes were two complementary modes of transport and the mean dis-
tance of trips made by the former was 700–800 m shorter than that
made by the latter. Second, there are concerns that the launch of BSSs
and other bike facilities may just reinforce the behavior of existing
bicyclists but not recruit new members who would switch transport
mode to bikes. Buck et al. (2013) found that BSS members are not
frequent bike-share users, as 21% female and 13% male members in
Washington, DC, reported no rides in a typical month. Schoner et al.
(2015) showed that bike lanes are more likely to attract existing bicy-
clists to a neighborhood than to encourage non-bikers to shift transport
modes. More recently, Mitra et al. (2017) reported that after the re-
development of bike facilities in downtown Toronto, Canada, young
people were still less likely to switch from a car trip to a bike trip. Third,
some scholars are concerned about the negative externalities associated
with BSSs. The launch of a BSS is usually accompanied by certain
changes in bike facilities. For example, the installation of docking sta-
tions occupies public space; prescribing bike lanes and increasing the
width of bike facilities reduces lane space for automobiles, which
consequently impacts the level of service of a road (Burke and Scott,
2016). In a nutshell, many users of BSSs may regard BSSs at best as an
adjunct to their primary transport mode, and facilities associated with
BSSs may impose adverse consequences. Such inconsistent arguments
in the effect of BSSs on road congestion call for further empirical studies
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to explore actual performances of BSSs across US cities.
Importantly, although cities worldwide have implemented BSSs to

propel utilization of bikes, the success of BSSs depends on how the
demand for the BSS from the end-user would be satisfied (Frade and
Ribeiro, 2014; Wolf and Seebauer, 2014). After all, for end-users, the
primary perceived benefits of BSSs are convenience and low travel cost
(Fishman et al., 2013). In short, there has not been an agreement so far
about whether the launch of BSSs has promoted the conversion of trips
previously made by automobile to BSSs. Because of the inconsistency in
the role of BSSs in the shift of transportation means, and the lack of
empirical studies that investigate the effect of BSS on congestions re-
ductions across the US, we conducted an empirical study to find the
relationship between the launch of BSSs and congestion using data from
96 urban areas across US from 2005 to 2014. The following section
introduces the data and methods employed in this study.

3. Data and methods

3.1. Data and study areas

Our data are mainly from four sources. First, congestion-related
data were obtained from the Texas A &M Transportation Institute
(https://tti.tamu.edu/), which combines speed data from INRIX
(http://inrix.com/) and the volume and roadway inventory data from
the Highway Performance Monitoring System from the US Federal
Highway Administration (FHWA). It describes congestion in a con-
sistent way, allowing for comparisons among different urban areas.
INRIX provides real-time traffic data so that “real” rush hour speeds of
fleets are measured, and overnight speeds are used to provide free-flow
speeds. It contains (1) quarterly congestion statistics from 52 US urban
areas from the fourth quarter of 2008 to the second quarter of 2015; (2)
yearly congestion statistics from 100 US urban areas and San Juan,
Puerto Rico, from 1982 to 2014. Second, socioeconomic profiles and
urban travel characteristics across different urban areas were acquired
from American Community Survey (ACS). Third, weather and climate
data were obtained from the National Climatic Data Center, National
Oceanic and Atmospheric Administration (NCDC-NOAA). Lastly, we
manually consolidated information regarding the launch time of BSSs in
the 100 US urban areas from the official website of BSSs and mass
media. San Juan, PR was excluded to control for the potential political
heterogeneity between Puerto Rico and the 50 US states.

We decided to use the yearly congestion statistics from the 100 US
urban areas because, on the one hand, these statistics not only contain a
considerable sample size; on the other hand, the exact launch month of
BSSs is sometimes either missing or hard to validate. Given that the first
BSS was initiated in 2007 among the 100 urban areas and most data
from ACS are only available since 2005, the period from 2005 to 2014
was selected for this study. As there are four urban areas (i.e., Albany-
Schenectady (NY), Honolulu (HI), Las Vegas-Henderson (NV), and
Louisville-Jefferson County (KY-IN)) without complete time-series data
covering the ten years' period, our final sample include 96 urban areas,
which results in a total number of 960 observations. Fig. 1 illustrates
the geographical distribution of the 35 urban areas with BSSs and the
61 urban areas without BSSs.

3.2. DID with two-way fixed-effects panel regression

The DID approach was employed to evaluate the impact of BSS
launches on congestion in the 96 urban areas in the US for 2005–2014.
DID is a well-established method and has been applied to transportation
studies (e.g., Grimes and Young, 2013; Hurst and West, 2014, and
Combs, 2017). Conceptually, DID assesses the impact of the im-
plementation of BSSs on congestion by calculating double differences,
one over time (before and after the launch of BSSs) and one across
urban areas (urban areas with BSSs and those without BSSs). We used a
DID regression specified as the following two-way fixed-effects model

(Eq. 1):

= + + + +Y γZ βX θ δ εit it it i t it (1)

where Yit is the congestion of the ith urban area and in the year of t, Zit
is the dummy variable of BSS entry to be assessed in the ith urban area
and in the year of t, and Xit is a suite of time-varying control variables of
the ith urban area and in the year of t. θi is the fixed-effect control
variable for time-invariant omitted variables for the ith urban areas, δt
is the fixed-effect control variable for trends in urban areas in the year
of t. εit is the random error term in the ith urban area and in the year of
t.

In the DID specification above, γ is the key parameter, which
measures the difference between the average change in congestion for
the treatment group (i.e., urban areas with BSSs) and the average
change in congestion for the control group (i.e., urban areas without
BSSs). It is also known as the average treatment effect on the treated
(ATET) (Eq. 2)

= − = − − =γ E Y Y T E Y Y T( | 1) ( | 0)T T C C
1 0 1 1 0 1 (2)

where Yt
Tand Yt

C are average congestion for urban areas in the treat-
ment group and the control group in time t, respectively. t=0 refers to
the period before BSS entry, and t=1 refers to the periods after BSS
entry. T1=1 refers to treatment (the presence of BSSs in the urban
areas), and T1=0 refers to controls (the lack of presence of BSSs in the
urban areas) at t=1.

The DID approach has the following advantages. First, we do not
need to consider all the variables that affect congestion because sub-
tracting the difference before entry of BSSs in congestion from after
entry of BSSs eliminates selection bias under the condition that this
unobserved heterogeneity is time invariant. Second, it allows us to
quantify how much of the change in congestion is ascribed to the
launch of BSSs as well as how much of that would have happened de-
spite the introduction of BSSs.

Nevertheless, one assumption of DID approach is that both the
treatment group and the control group would have similar trends before
treatment. Additionally, one concern about two-way fixed-effect panel
regression model is that the treatment groups may differ in ways that
would affect their trends over time. To mitigate such concerns about
treatment heterogeneity and correct model specification, Ho et al.
(2007) proposed matching with propensity scores (a.k.a., propensity
score matching, PSM). More recently, Ferraro and Miranda (2017)
found the combination of panel data with PSM is more likely to ap-
proximate a randomized controlled trial than applying a single design.
Therefore, our robustness check started with constructing a subsample
with only “matched data”, which includes all urban areas within the
treatment group and those urban areas in the control group that are
most observationally similar to the urban areas in the treatment group.
Following Hamilton and Wichman (2017), we used propensity scores to
create the subsample and re-ran the regression model with the sub-
sample.

Additionally, we conducted the following robustness checks. First,
we used the Augmented Dickey-Fuller test to test the stationarity of
congestion measures with the first order of lag. If it failed to reject the
null hypothesis of the unit root, the first order difference of congestion
measures needs to be taken to stabilize the time-series. Second, we
checked the specification of our two-way fixed-effects model using the
Hausman test, where the null hypothesis is that panel regression with
random effects is more appropriate than that with fixed effects. Third,
we applied the Breusch-Godfrey test for potential serial correlation
(temporal correlation) of error terms within each urban area and the
Breusch-Pagan test for possible inconstant variance of error terms
(heteroscedasticity). If either serial correlation or heteroscedasticity is
found, robust standard errors should be reported (Arellano, 1987).
Fourth, we utilized an additional congestion measure to check the
consistency of our results. Lastly, a post-hoc analysis was included to
explore the role of BSSs in rush-hour congestion further.
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3.3. Variables

We list all variables along with their sources and descriptions ap-
plied in this study in Table 1. Our explanatory variable of interest is the
interaction term (Zit in Eq. 1) between the treatment group dummy and
post-treatment dummy (BSS = Treated * Post), which is a dummy
variable (1 = the launch of a BSS) representing the entry of BSSs. A
suite of control variables (Xit in Eq. 1) are obtained from three differ-
ence data sources, including the UMS, the ACS, and the NCDC-NOAA.
From the UMS, the total population in thousands (Population) is used to
proxy for the size of the urban area. Second, the percentage of auto-
commuters (Autocommuter) is computed as the total number of auto-
commuters divided by the total population. Third, the average arterial
street daily thousand miles of travel (VMT) is gathered. An arterial
street often delivers traffic between different urban centers and from
distributor roads (i.e., low-to-moderate-capacity roads which moves
traffic from local streets to arterial roads) to freeways. VMT is populated
as the average daily traffic of a section roadway multiplied by the
length of that section of roadway. From the ACS, the median income in
USD (Income) and median age (Age) were obtained to control for so-
cioeconomic profiles; the percentages of workers who use public
transport (excluding taxi cabs) to work and bike to work (Public_Tran-
sport, and Bicycle, respectively) are added to control for urban travel
behaviors. From the DCDC-NOAA, average precipitation (Precipitation)
and temperature (Temperature) data were obtained to control for urban
weather and climate factors.

For the dependent variables (Yit in Eq. 1), we have included two
different measures of congestion from the Urban Mobility Scorecard
(UMS) product, namely the total annual excess fuel consumed in a
thousand gallons (AEFC), the annual hours of delay per autocommuter
(AHD_AC). The total annual excess fuel consumed in a thousand gallons
(AEFC) is calculated as the difference in fuel consumption during con-
gested conditions and free-flow conditions. The annual hours of delay
per autocommuter (AHD_AC) is calculated as the summation of the total
peak period delay divided by the total of autocommuters and the total
remaining period delay divided by the total population. AHD_AC in-
cludes off-peak delay on purpose, as it also takes delays during other
times of the weekdays and the weekends into consideration. While both
measures represent general congestion conditions, we applied the
commuter stress index (CSI) in the post-hoc analysis as proxy for rush-
hour congestion. The commuter stress index (CSI) is the travel time in
the peak directions during the peak periods divided by the free-flow
travel time, which indicates the congestion of daily work trip experi-
enced by each commuter. Peak periods are defined as the morning peak
hours (6 a.m. to 10 a.m.) and the evening peak hours (3 p.m. to 7 p.m.).
CSI is unitless, which allows for comparing trips of different distances to
estimate excess work trip travel time compared to free-flow conditions.
Changes in CSI are calculated by subtracting 1.0 from the CSI values;
therefore, such changes reflect the differences in extra travel time ra-
ther than the numeric number of CSI. For example, an increase of CSI
from 1.1 to 1.2 is 100% (i.e., extra travel time of 20% compared to
10%). Detailed algorithms of congestion measures can be found in the

Fig. 1. Bike-sharing systems (BSSs) in US urban areas, 2005–2014. Yes = 35; No = 61. Selected cities are labeled to the top right of the corresponding cities. The base map is provided by
ESRI as a courtesy.
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official website of UMS (https://mobility.tamu.edu/ums/congestion-
data/). Temporal dynamics of these three measures of congestion are
plotted in Fig. 2.

4. Results

The descriptive statistics of all variables are shown in Table 2. Ex-
cept for the dummy variables (i.e., Treated, Post, and BSS), all variables
were log-transformed before regression. Results of the DID approach
with the two-way fixed-effects (i.e., year and urban area fixed effects)
panel regression model are shown in Table 3. We progressively added
the explanatory variables for the launch of bike-sharing systems, con-
trol variables for socioeconomic, travel behavior, and climate condi-
tions, and finally those interaction terms (Model 1 to Model 3 in
Table 3). Model 3 represents our full model. From Model 1 to Model 3,
the adjusted R2 increases from 0.117 to 0.519.

To further confirm our full model specification, we have checked
the following statistical tests. First, the Augmented Dickey-Fuller Test
with the first order of lag is significant (p < 0.01), indicating that the
time-series are stationary so that there is no need to take the first order
difference of the dependent variable. Second, the Hausman test is sig-
nificant (χ2 = 150, p < 0.01), suggesting that panel regressions with
two-way fixed effects are more appropriate than those with random
effects. Third, we reported robust standard errors in Table 3 to control
for potential problems of serial correlation or heteroskedasticity.

In Model 3, it shows the entry of bike-sharing systems has mixed
impacts on congestion. On the one hand, it mitigates the positive role of
the population on congestion. Urban areas with the launch of BSSs, a
1% increase in total population will result in 0.0264% less congestion
compared to those without BSSs. In other words, BSSs benefit larger
cities more than they do to smaller ones regarding congestion reduc-
tion. On the other hand, they strengthen the positive role of median
income to congestion. Specifically, with the presence of BSSs, a 1%
increase in median income will lead to 0.1021% more congestion of the
urban area compared to those without BSSs. In another word, richer
cities get worse off by introducing BSSs regarding congestion. Also, in
Model 4, we re-estimated Model 3 using only matched samples, which
are derived from PSM. The results are consistent with those in Model 3,
with the slightly different magnitude of the beta coefficients for the
interaction terms. The preprocessing of data with PSM also increases

the adjusted R2 by 20% (from 0.519 to 0.625).
Furthermore, Model 3 was re-estimated by changing the congestion

measure from the annual excess fuel consumed (AEFC) to the annual
hours of delay per autocommuter (AHD_AC) in Model 5 (Table 4). The
results are consistent with those in Model 3 (Table 3). Lastly, as a post-
hoc analysis, we changed the dependent variable to the commuter stress
index (CSI), which proxies the congestion during rush-hour in peak
directions (Model 6). Model 6 reveals that in addition to the mixed
moderating effects, the launch of BSSs has a significant direct impact on
reducing rush-hour congestion. In the next section, we will discuss such
findings elaborately and provide implications based on the empirical
results.

5. Discussions and conclusion

With a difference-in-differences model with two-way fixed-effects
panel regression, this study has revealed that the launch of BSSs has
statistically significant mixed effects on congestion based on the 96 US
urban areas, 2005–2014. Such findings are robust to regression with
matched subsamples from propensity score matching and different
measures of congestion. Such results have the following policy and
management implications.

First, we found that BSSs benefit larger cities more than smaller
ones in congestion reduction. Using the measure of excel fuel con-
sumption as a proxy for congestion, this finding shows alignment with
previous studies that BSSs universally reduce driving and taxi use in
almost every city (Martin and Shaheen, 2014; Shaheen et al., 2013).
Additionally, our finding suggests conditioning on other covariates, a
1% increase in the population of cities without BSSs is associated with
0.6863% increase in congestion; however, a 1% growth in the popu-
lation of cities with BSSs is associated with 0.0264% less increase in
congestion. Compared to smaller cities, larger cities usually have more
robust public transport systems, which offers more routes and frequent
services. As many of docking stations are located near public transport
stops, BSSs encourage multimodal transport by providing connections
with public transport systems. Therefore, in larger cities, BSSs may
facilitate substituting short-distance trips which would be otherwise
made through cars. In rush hours, it can divert traffic and reduce
transportation congestion. Conversely, in smaller cities, where there are
fewer routes and sparse services, BSSs may serve as complements to

Table 1
Summary of variables.

Variable Unit Description Data sourcea

Explanatory
Treated N/A The treatment group dummy

(0 = No, 1 = Yes)
Manually collected by the
authors

Post N/A The post-treatment dummy
(0 = No, 1 = Yes)

Manually collected by the
authors

BSS N/A The entry of bike-sharing system, Treated * Post
(0 = No, 1 = Yes)

Calculated by the authors

Control
Population N/A Population (in thousands) USM
Autocommuter N/A Total autocommuters divided by total population * 100% USM
VMT Thousand Miles Arterial street daily mileage of travel USM
Income USD Median Income ACS
Age N/A Median age ACS
Public_Transport N/A Percentage of workers use public transportation (excluding taxi cabs) to work ACS
Bicycle N/A Percentage of workers use bike to work ACS
Precipitation Inches Average precipitation NCDC-NOAA
Temperature Degrees Fahrenheit Average temperature NCDC-NOAA

Dependent variable
AEFC Thousand gallons Annual excess fuel consumed USM
AHD_AC Hours per autocommuter Annual hours of delay per autocommuter USM
CSI N/A Commuter stress index (travel time index calculated for only the peak direction in each peak

period)
USM

a UMS = Urban Mobility Scorecard (https://mobility.tamu.edu/ums/); ACS = American Community Survey (https://www.census.gov/programs-surveys/acs/); NCDC-
NOAA = National Climatic Data Center, National Oceanic and Atmospheric Administration (https://www.ncdc.noaa.gov/).
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public transit by providing connections between different transit stops.
Such findings also resonate Hamilton and Wichman (2017)’s study,
where they found DC's Capital Bikeshare has a positive role in traffic
congestion reduction.

Additionally, we observe a sublinear scaling relationship between
total population and congestion at US urban area level. Although more
populated urban areas are inevitably associated with more congestion
than less populated ones, the rate at which congestion increases is
slower than that of the total population. The launch of BSSs allows such
“increase” even slower. As the logarithm was taken for all non-dummy
variables, those beta coefficients can be interpreted in favor of elasticity
in economics, and we do find the economies of scale, as defined by
Bettencourt et al. (2007). Relatedly, larger cities are associated with
less per capita congestion, as reflected in Model 5 where congestion is
measured by annual hours delay per auto commuter and in Model 6

which indicates rush-hour congestion in peak directions experienced by
each commuter.

Second, richer cities tend to get worse off with the introduction of
BSSs. Richer cities usually have greater ownership of private cars and
more luxury cars. One possible explanation is that the launch of BSSs
sometimes encourages extra trips which would not be made without
such facilities (Ahillen et al., 2016). With a greater private car owner-
ship, people in richer cities may be more likely to use cars as connectors
to those “extra trips”, resulting in more traffic on the road.

Third, as the post-hoc analysis indicates, BSSs have a direct effect on
reducing congestion during rush hours, which may imply a modal
substitution, where people reduce car and bus use as a result of BSSs.
Such finding is consistent with bike-share member surveys (e.g., Buck
et al., 2013; Shaheen et al., 2013), although these studies find the size
of the modal substitution effect differs both across cities and within

Fig. 2. Plots of congestion measures 2005–2014. (A)
Annual excess fuel consumed (AEFC); (B) annual hours
delay per autocommuter (AHD_AC); (C) commuter stress
index (CSI).
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different areas of cities. More recently, Campbell and Brakewood
(2017) found after controlling for the expansion of bike lanes, every
thousand bike-sharing docking stations along a bus route is associated
with a 1.69% fall in daily unlinked bus trips on roads in Manhattan and
Brooklyn of the New York City. This finding serves as a starting point to
understand the pathways through which BSSs reduce peak-time

congestion and facilitate multimodal transportation, although the in-
terrelation between BSSs and public transport systems need to be fur-
ther explored and is beyond the scope of this study.

Lastly, a number of studies have pointed out BSSs either directly
reduce car usage (DeMaio, 2009; Martin and Shaheen, 2014) or in-
directly increase the use of public transport by connecting the last mile
(Fishman et al., 2013; Noland and Ishaque, 2006; Shaheen et al., 2013).
In a hypothetical back-of-the-envelope scenario, with the launch of
BSSs, if a 1% autocommuters switch from automobile to other means of
transportation, it will result in an approximately 0.3% reduction in
congestion. Indeed, the US National Household Travel Survey (NHTS,
2009) has revealed that 37.6% of trips in private cars and 73.6% of
those by bike are< 2 miles, which leaves room for switching from
private cars to BSSs.

This work aims to serve as a starting point for researchers, urban
policy-makers, and BSS operators to further explore the impact of BSSs.
The success and benefits of BSSs depend on the number of trips pre-
viously made by car are shifted. They also rely on how (much) users'
demand is realized. As for end-users, one of those major perceived
benefits of bike-sharing is low-cost and convenience (Fishman et al.,
2013). Therefore, policy-makers and BSS managers need to understand
BSS users' travel preference (Faghih-Imani and Eluru, 2015; Jimenez
et al., 2016) so that locations and the operation of BSS can be optimized
(Garcia-Palomares et al., 2012; Lin and Yang, 2011; Médard de Chardon
et al., 2016).

Due to data availability issue, there are several limitations of this
study, which also casts lights on future research directions. First, this
study has only considered the launch of BSSs and its impact on

Table 2
Descriptive statistics of variables (N = 960).

Variable Mean SD Min Max

Explanatory
Treated 0.36 0.48 0 1
Post 0.8 0.4 0 1
BSS 0.29 0.45 0 1

Control
Population 1700.15 2539.12 105 19,040
Autocommuter 49.42 4.02 26.96 55
VMT 15,086.38 19,549.85 988 125,800
Income 25,965.48 4329.22 12,345 42,376
Age 36.06 3.54 23.5 52.5
Public_Transport 3.56 4.32 0.1 32.7
Bicycle 0.72 1.16 0 11
Precipitation 37.09 19.22 0.27 138.7
Temperature 59.03 8.59 43.3 77.4

Dependent variable
AEFC 25,522.23 40,325.28 644 296,701
AHD_AC 39.88 13.18 6 86
CSI 1.24 0.1 1.08 1.64

Table 3
The effect of bike-sharing systems (BSSs) on congestion.

Model (1) (2) (3) (4)

Sample Full Full Full Matched only
Post 0.0641

(0.0127)
−0.0005
(0.0101)

0.0024
(0.0101)

−0.0213*
(0.0099)

BSS = 1 0.0166
(0.0163)

0.0047
(0.0124)

−0.8422
(0.4292)

−0.7571
(0.4737)

Control
Population 0.7032***

(0.0590)
0.6863***
(0.0582)

0.6498***
(0.0576)

Autocommuter 0.4407***
(0.1301)

0.3636**
(0.1302)

0.2776
(0.1437)

VMT 0.0631
(0.0404)

0.0660
(0.0413)

0.1250***
(0.0345)

Income 0.4354***
(0.0508)

0.4130***
(0.0561)

0.4292***
(0.0502)

Age −0.1940
(0.1945)

−0.1466
(0.2003)

0.0163
(0.1214)

Public_Transport 0.0006
(0.0084)

−0.0011
(0.0083)

0.0057
(0.0083)

Bicycle −0.0010
(0.0015)

−0.0010
(0.0015)

0.0112
(0.0061)

Precipitation −0.0045
(0.0063)

−0.0041
(0.0062)

−0.0034
(0.0050)

Temperature 0.0497
(0.0570)

0.0648
(0.0560)

0.1243**
(0.0458)

Interaction
BSS * Population −0.0264***

(0.0068)
−0.0215**
(0.0067)

BSS * Income 0.1021*
(0.0433)

0.0916*
(0.0456)

Year fixed effects Yes Yes Yes Yes
Urban area fixed

effects
Yes Yes Yes Yes

Adj. R2 0.117 0.509 0.519 0.625
F-statistic 112.303*** 99.689*** 87.975*** 78.605***
Observations 960 960 960 560

Congestion is measured by annual excess fuel consumed (AEFC). The treatment group
dummy (Treated) was dropped due to multicollinearity. The natural logarithm was taken
for all non-dummy variables. Heteroskedasticity consistent coefficients are reported in
parenthesis.
Significant codes: '***' 0.001, '**' 0.01, '*' 0.05.

Table 4
Regression results of robustness check and post-hoc analysis.

Model (5) (6)

Dependent variable AHD_AC CSI
Post 0.0026

(0.0108)
0.0009
(0.0016)

BSS = 1 −0.8841
(0.4594)

−0.2873**
(0.0921)

Control
Population −0.3066***

(0.0574)
−0.0485***
(0.0107)

Autocommuter −0.3153*
(0.1328)

−0.0532*
(0.0264)

VMT 0.0587
(0.0435)

0.0111*
(0.0054)

Income 0.4093***
(0.0622)

0.0601***
(0.0092)

Age −0.1821
(0.2276)

−0.0045
(0.0244)

Public_Transport −0.0017
(0.0083)

0.0008
(0.0012)

Bicycle −0.0005
(0.0016)

−0.0001
(0.0002)

Precipitation −0.0065
(0.0073)

0.0002
(0.0007)

Temperature 0.0396
(0.0604)

0.0180*
(0.0085)

Interaction
BSS * Population −0.0269***

(0.0073)
−0.0050***
(0.0010)

BSS * Income 0.1064*
(0.0461)

0.0317***
(0.0091)

Year fixed effects Yes Yes
Urban area fixed effects Yes Yes
Adj. R2 0.096 0.129
F-statistic 16.176*** 19.220***
Observations 960 960

The treatment group dummy (Treated) was dropped due to multicollinearity; the natural
logarithm was taken for all non-dummy variables. Heteroskedasticity consistent coeffi-
cients are reported in parenthesis.
Significant codes: '***' 0.001, '**' 0.01, '*' 0.05.
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congestion across US cities at a very high level. We were not able to
differentiate the effect of the size or coverage of BSSs in each urban
area. Further work can focus on how such operation factors of BSSs
make a difference. Second, the unit of analysis in this study is at urban
area level. Studies at a finer scale (e.g., neighborhood or zip code level)
may provide more nuanced knowledge of the impact of BSSs. For ex-
ample, Zhang et al. (2017) explored how different build environment
factors affect the usage of BSSs. Third and relatedly, this work focused
on the introduction of BSSs, but not the actual usage. Social factors
(e.g., the influence of family, friends, and the workplace) affect users'
attitudes to biking in general (Willis et al., 2015). Additionally,
Fishman (2016) found a divergence of the socioeconomic profiles of
BSS users and those of the general population, where BSSs users are
biased to be white males with above average income and education
level. Lastly, on the one hand, we appeal for BSS operators to open
anonymized operational datasets to the public; on the other hand, we
plan to delve into the various factors (e.g., operational, natural en-
vironmental, and socioeconomic) of BSSs at multi-level (e.g., facility
level, neighborhood level, city level, etc.) on their purported benefits in
our future studies.
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