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A B S T R A C T

Wasting food is one of the rare problems that affects our ability to achieve economic goals in terms of food
security, environmental sustainability, and farm-financial security. Most of the ideas proposed to this point
involve either behavioral nudges or administrative regulations that are either too paternalistic or piecemeal to
represent viable solutions. In this study, we investigate the potential for commercial peer-to-peer mutualization
systems (CPMSs), or sharing-economy firms, to emerge as market platforms for the exchange of surplus food. If a
system of CPMSs is able to develop in a self-sustaining way, then the market prices they create will generate
sufficient incentives for all actors to manage surplus food more efficiently. We develop an empirical model of a
CPMS operating as a platform in a two-sided market, and examine its viability using data from one of the first
CPMS firms in the surplus-harvest industry, Imperfect Produce, Inc. Empirical estimates of a two-sided network-
demand model show that user-demand rises in the number of growers shipping to the platform, and grower
demand for distribution rises in the number of users. Our findings indicate that secondary markets have the key
elements needed for CPMS success, and that policy tools designed to facilitate transactions in secondary markets
can be highly effective in reducing food waste.

1. Introduction

Food waste is one of the rare problems that cuts across multiple
social issues, from food security (Coleman-Jensen et al., 2014) and
environmental degradation to economic efficiency (Parfitt et al., 2010;
Gustavsson et al. 2011; Buzby et al., 2011; Buzby and Hyman, 2012).
Wasted food not only impairs society’s ability to feed an estimated 9.7
billion people globally by 2050 (UN, 2015), but it also accounts for
roughly 25% of US freshwater supplies each year and consumes nearly
300 million barrels of oil (Hall et al., 2009). Food production generates
substantial environmental externalities associated with greenhouse gas
emissions and phosphate run-off (Buzby and Hyman, 2012), the un-
consumed portion of which is unnecessary, and food waste at the
terminal point of the food system accounts for roughly 18% of total
solid waste in municipal landfills (EPA, 2016). In terms of the discarded
value of food, alone, USDA estimates that the US loses 31% of total food
supply, or $165.5 billion per year in total value (Buzby et al., 2014).

Food waste occurs at virtually all stages of the supply chain from farmer
to retailer to consumer, resulting in the disposal of potentially usable
food in nearly every sector of the food system in the distribution
channel between farmers and consumers.

An important strand of economic research examines consumer food
waste as a behavioral problem, seeking to address the problem by
regulating waste disposal by educating consumers about expiration
dates and changing consumers’ incentives to generate waste (Tsiros and
Heilman, 2005; Theotokis et al., 2012; Buzby and Hyman, 2012;
Halloran et al., 2014).1 These are important priorities that confront a
growing population. However, policies designed to reduce food waste
in the consumer market only control incentives at the end of the dis-
tribution channel and fail to encompass all stages of the food system
where food waste occurs. In the upstream stages of the food economy,
commercial peer-to-peer mutualization systems (CPMSs), that seek to
match farmers and distributors to consumers for fresh produce items,
represent a potentially important market-based solution to more
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1 Emerging research has identified a range of causes specific to different levels of the food-supply chain. While losses at the farm level due to weather damage and natural variation in
quality are substantial (Gustavsson et al., 2011; Kummu et al., 2012), most of the waste in developed economies comes from households (Griffin et al., 2009; Buzby et al., 2011; Cicatiello
et al., 2016). Food waste at the household level is primarily due to a lack of understanding of “best-before” or “use-by” dates, inaccurate meal planning, imperfect home-storage systems,
and discounts on large packages that encourage over-buying (Gustavsson et al., 2011; Halloran et al., 2014). Demand uncertainty, and the inability to accurately forecast demand, are also
key to food waste among foodservice operators and food manufacturers (Mena et al., 2011), resulting in the so-called bullwhip effect that magnifies food waste through the supply chain.
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efficiently allocate food at higher levels of the food system by stimu-
lating price realization for products that are edible, but contain defects
in size, color, shape and size; the so-called market for “ugly food”
(Garfield, 2016).2 In this paper, we examine the efficiency of food ex-
change in upstream markets of the food system by examining the per-
formance of CPMS systems in facilitating the exchange of harvested
produce that is too small, large, misshapen, discolored, or otherwise
deemed in excess of need through traditional marketing channels.

It has long been understood in the management of negative en-
vironmental externalities that attaching a price to an activity is more
likely to lead to its efficient control, including waste (Dinan, 1993;
Fullerton and Kinnamanm, 1995; Fullerton and Wu, 1998; Buzby and
Hyman, 2012; Acuff and Kaffine, 2013). By creating a market for im-
perfect, or surplus, food, suppliers will be better able to match the
distribution of quality produced by the natural variability of biological
production, with the willingness-to-pay for quality in the consumer
market.3 This is a classic price discrimination result – whereas super-
market grading standards (which are generally higher than USDA
grades for fresh produce) serve as an effective minimum-quality stan-
dard, selling imperfect produce that is inarguably below-grade allows
suppliers to segment consumers according to their willingness to pay
for quality (Mussa and Rosen, 1978; Caswell, 1998), sell a greater
quantity, and reduce the amount of surplus-harvest. In this paper, we
investigate the potential for CPMS markets to emerge for such ugly food
products.

Fresh foods that are harvested below marketable quality and left
unsold contribute to the food waste problem. Indeed, Gustavsson et al.
(2011) and Kummu et al. (2012) have found weather damage and
natural variation in quality to lead to substantial quantities of unsalable
farm products. Because farmers face uncertain demand and supply
conditions, and forecasting is imperfect, over-production of farm pro-
ducts occasionally occurs, leading to low price realizations that leave
perfectly edible food unharvested in the field. In the absence of a
market for surplus, or leftover food, excessive amounts of usable food
are discarded either by being “plowed under” at the farm level or by
being harvested and sent to downstream markets that may ultimately
process these products as waste (Garrone et al., 2014). CPMS services
that help match these products with buyers can offer an important
market for reducing food waste.4

We base our observations on the performance of CPMS systems for
surplus food on data from Imperfect Produce, Inc. Imperfect Produce,
Inc. is a startup company based in California that aims to reduce food
waste in the surplus-harvest market by matching producers at the farm
level with consumers at the retail and foodservice levels of the food
system for the exchange of food products that are not graded through
conventional channels of the food system. Our data consists of four
years of peer-to-peer transactions, including the amounts ordered,
prices paid, and attributes of consumers and the sharing firms. These
data are sufficiently rich to allow us to test an empirical model of ac-
tivity on the sharing platform in which the breadth of sales transactions
matches with the range of consumer preferences for product attributes
that drive value in final goods markets for food products. These data are
sufficiently rich to allow us to investigate whether the fundamental
conditions are present for a CPMS to succeed in matching buyers and
sellers in food market, and if so, whether farm-to-consumer platforms in

the “food sharing” economy present a viable opportunity for a upstream
food markets to help alleviate the problem of unwanted food.5

CPMS firms such as Uber, AirBnB, FarmLink, TaskRabbit, and Liquid
have increased consumer’s willingness to transact goods in the “sharing
economy” (Bardhi and Eckhardt, 2012; Lamberton and Rose, 2012;
Sundararajan, 2013, 2014; Belk, 2014; Fraiberger and Sundararajan,
2015; Möhlmann, 2015). As Botsman and Rogers (2010) argue, CPMS
markets emerge when advances in sharing technology – e.g., cell phone
applications – facilitate markets for durable assets with excess capacity.
In the case of food, a farmer’s field is the durable asset, and excess
capacity is manifest in surplus harvest. A novel feature of CPMS markets
for surplus food is that excess capacity in food markets results in a
perishable stock. For this reason, policies that facilitate food transac-
tions in a CPMS market, and thereby generate sales that would other-
wise not transpire, serve to reduce surplus output that would otherwise
be discarded, plowed under, or end up in lower-valued uses than in-
tended.6

Our empirical approach is framed around recent estimation tech-
niques employed in two-sided markets (Armstrong, 2006; Kaiser and
Wright, 2006; Steiner et al., 2016). In a two-sided market, demand for a
“platform”, for instance a menu of food items coordinated for sale by a
CPMS provider like Imperfect Produce, is comprised by demand for
distribution from potential suppliers of surplus food on one side, and by
demand for procurement from potential consumers of food waste on the
other side. The nature of demand on the platform is two-sided due to
indirect network economies (Rochet and Tirole, 2003, 2006) created by
the breadth of the items available on the platform. Specifically, the
benefit to consumers from interacting on the platform rises with the
number of suppliers providing surplus food on the platform, while the
benefit to suppliers from interacting on the platform rises with the
number of consumers purchasing surplus food on the platform. Network
economies on a two-sided platform thereby create a “virtuous cycle” in
which supply facilitates its own demand, causing emerging platforms
either to succeed or fail in spectacular fashion.

We estimate the strength of demand on each side of the market in
our empirical model, allowing us to determine: (i) whether demand
conditions exist for CPMS markets to emerge as a viable business model
for surplus food; and (ii) whether policy tools such as subsidies on “ugly
food” are effective in reducing the amount of surplus food. Our findings
indicate that consumers’ preferences for the breadth of food items
available on the site is particularly important in driving indirect net-
work effects in the CPMS market. This result suggests that the profit-
ability of a CPMS in this setting is directly related to the number of
suppliers the platform sources from in procuring surplus food, and that
the value of transacting surplus food on the platform rises significantly
for producers with the size of the network. This feature of the market
makes food policies that subsidize purchases on CPMS platforms for
surplus food particularly effective in reducing excess produce. To

2 We view CPMS systems broadly as any technology that matches buyers and sellers on
a platform derived from peer-to-peer transactions. Botsman (2013) provides a general
characterization of CPMS firms as any entity that facilitates the decentralized trade of
products or services that are underutilized in the economy.

3 A reviewer suggests that creating markets for surplus harvest will increase supply,
reduce the price, and encourage more waste. While this effect is plausible, we believe it
represents a second-order effect relative to the direct incentive embedded in a price for
waste.

4 In this study, we do not attempt to measure the amount of food loss, or waste, so we
use the terms interchangeably throughout. We do appreciate, however, that the concepts
are not identical (Bellemare et al., 2017).

5 While food waste occurs at all points of the food supply chain, CPMSs to date have
emerged largely between farmers and consumers, providing rich transactional data on
which to base our empirical investigation. However, Food Cowboy represents one ex-
ample of a “B2B” firm that transacts surplus food that has been purchased by restaurants,
or even households. In this regard, Food Cowboy represents an example of how the CPMS
concept may be extended to downstream food markets and encompass consumer-level
food waste.

6 An interesting possibility suggested by a reviewer is that creating new, upstream
markets for surplus harvest will reduce food prices, potentially resulting in greater post-
consumer food waste. While our model is silent on general equilibrium effects, the total
amount of food transacted on CPMS platforms is currently small and likely to have
negligible effects on overall food prices. Moreover, we believe enhancing the efficiency of
food utilization at upstream levels of the food system leads to better matching in
downstream consumer markets that will tend to dominate second-order effects relative to
changes in consumer food prices. Comprehensive modeling of general equilibrium effects
of CPMS innovations in upstream food markets, which includes changes in land use,
changes in animal feed prices, as well as consumer price changes in fresh produce markets
relative to processed, shelf-stable foods (and the attendant consumer health implications),
are beyond the scope of the present study.
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quantify this effect, we numerically estimate the effect of price sub-
sidies on CPMS purchases on the quantity of surplus food siphoned out
of the waste stream in upstream food markets. We find that a 25%
subsidy on CPMS transactions results in a 60% increase in the quantity
of surplus food sold on the platform and that a 90% subsidy on CPMS
transactions results in a threefold increase in the quantity of surplus
food sold on the platform, which suggests that subsidies on “ugly food”
transactions are a cost-effective policy to reduce the amount of food
that may be otherwise discarded.

Our study contributes both to the empirical literatures on two-sided
markets and CPMS viability and to the practical policy discussion on
food waste. While the majority of empirical investigations into two-
sided markets consider either technology (Nair et al., 2004) or media
(Ackerberg and Gowrisankaran, 2006; Kaiser and Wright, 2006) mar-
kets, ours is the first to consider a secondary market for a surplus
commodity as a fundamentally two-sided market. That is, consumers
demand a range of choices from the commodity on offer, and suppliers
demand broad distribution among the consumers served by the plat-
form. Our empirical analysis of a surplus-harvest CPMS is the first to
cast the study of sharing-economy firms in the context of a two-sided
market, with the attendant implication that they may be subject to
indirect network effects. In terms of the food waste literature, ours is
the first analysis of the viability of a “market” for surplus food. If such
markets are indeed viable, then agents at all points in the food supply
chain may be endowed with the incentive to not throw food away, but
to trade it for profit.

The remainder of the paper is organized as follows. In the next
section, we formulate an empirical model to assess the viability of
CPMS platforms as a tool for reducing surplus food. In Section 3, we
describe our data and provide summary evidence from reduced-form
models that the market for surplus food indeed has the character of a
two-sided market. In Section 4, we present and discuss our estimation
results that test our hypothesis of a two-sided market and discuss the
practical relevance of our findings for the viability of CPMS platforms
for creating markets for surplus harvest. In the final section, we draw
some broad conclusions on how policies can be designed to reduce
surplus food through the use of targeted incentives in emerging CPMS
markets for ugly produce.

2. Econometric model of a surplus-food market

2.1. Background

Our empirical model is based on the indirect network effects gen-
erated by a two-sided demand for intermediary distribution services.7

CPMSs in general, and those that distribute surplus food specifically,
behave as multi-product platforms that exist to connect buyers of sur-
plus food to suppliers. Buyers prefer a variety of products, and therefore
value platforms that are able to attract and retain a large number of
suppliers (Draganska and Jain, 2005; Richards and Hamilton, 2013;
Steiner et al., 2016), while suppliers prefer to sell through a platform
that attracts a large number of potential buyers. In the case of a CPMS
market for surplus food, buyers may be more interested in procuring
food from the CPMS market when the platform makes multiple food
items available at once, and sellers can find higher-valued uses for
surplus food items when there is a greater number of buyers on the
platform.

Network effects have been empirically identified in many markets
for durable goods. Network effects have been shown to be important in
two-sided markets for computer hardware and software (Nair et al.,
2004), video games (Clements and Ohashi, 2005; Corts and Lederman,

2009; Dube et al., 2010; Lee, 2013; Zhou, 2016), automated clearing
house (ACH) payment systems (Ackerberg and Gowrisankaran (2006))
intermediation systems (Caillaud and Jullien, 2003), video cassette
recorders (Park, 2004), compact-disc players (Gandal et al., 2000), C2C
platforms (Chu and Manchanda, 2016), radio stations (Jeziorski, 2014),
sports-card trading platforms (Jin and Rysman, 2015), newspapers
(Argentesi and Filistrucchi, 2007; Chandra and Collard-Wexler, 2009;
Van Cayseele and Vanormelingen, 2009), yellow page advertising and
magazines (Rysman, 2004; Kaiser and Wright, 2006). Our analysis de-
parts from the literature by considering network effects for perishable
items (surplus produce), which differ methodologically from durable
goods markets (as discussed below), and by deriving novel insights for
alternative uses for unsold food. Specifically, our approach allows us to
numerically simulate the effectiveness of various food policy instru-
ments (e.g., taxes on waste, subsidies on donations) in reducing surplus
harvest when food policy is targeted toward one side or the other of the
CPMS market.

Our objective in this section is to derive a model of weekly platform
demand, where demand is defined as the probability of ordering food
on the platform, multiplied by the size of each order. The size of each
order is defined as the number of different items purchased in each
basket.

We adopt a two-stage approach to modeling each component of
platform demand. In the first stage, we model the probability that each
household purchases surplus food from the platform in a given week,
and in the second stage, we model the number of items purchased on
the platform conditional on having placed an order. Aggregating over
all households in the data set accordingly provides a predictive model
of the total platform demand on a weekly basis. Critically, platform
demand in each stage of the model depends on the range of products
offered, or the number of suppliers serving the platform.

With the demand estimates, we then model equilibrium product
provision, or how suppliers of surplus food respond to consumer de-
mand conditions on the platform. By endogenizing both demand for the
platform, and the provision of surplus food on the platform, we estimate
the strength of demand on each side of the market, which identifies the
importance of indirect network effects in the CPMS market for surplus
food.

2.2. Purchase incidence model

We begin by modeling the number of orders transacted on the
platform each week, which is the product of the total number of
households visiting the platform and the probability that each house-
hold purchases food items on the platform. The probability that an
individual household places an order (purchase incidence) depends, in
turn, on the variety of items offered on the platform and the prices of
the various items. Allowing household purchase incidence to depend on
the variety of products available on the platform captures the indirect
network effect in which demand depends on the number of surplus food
items available on the platform. That demand depends on the extent of
product variety available in the marketplace is well-established in both
the marketing literature (McAlister and Pessemier, 1982; Kim et al.,
2002; Briesch et al., 2009) and the economics literature (Dixit and
Stiglitz, 1977; Richards and Hamilton, 2015). Intuitively, if preferences
are distributed uniformly among consumers in the market, then in-
dividual consumers are more likely to find better matches between
products and their tastes when a greater number of products is avail-
able, raising the probability of finding an acceptable match on the
platform.

We model our first stage “Order-Probability” demand using a
combined constant elasticity of substitution (CES) – logit framework.
Consumers form expectations of the number of items offered on the
platform, and the total sales receipt that results from their subsequent
purchase, according to a CES index function; however, the indirect
utility of each order is assumed to be driven by an Extreme Value (logit)

7 “Indirect network effects” refer to the general concept that benefits of membership
rise in the “size” of the market, whether measured by the number of users, products,
software titles or other measure.
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preference-heterogeneity assumption. The CES form ensures that con-
sumers exhibit an inherent preference for variety (Dixit and Stiglitz,
1977; Nair et al., 2004) when forming their expectations of surplus food
purchases on the CPMS platform, which is appropriate for our order-
demand problem because utility is assumed to rise in the number of
items available, and at the same time does not restrict the degree of
substitution among products as with a discrete-choice model.

We start with a brief description of the Order-Probability model,
and then discuss how we nest the Order and Size models together on the
CPMS platform. Assume the platform offers = …j N1,2, products, where
a product is defined as an item in one of several categories, such as fresh
fruits, vegetables, cereal products, or other perishable items.8 Assume
buyer i visits the platform and obtains utility from buying products

= …j 1,2, N during week t as given by the CES demand model (sup-
pressing the time, t, subscript to simplify notation):

∑… =
⎛

⎝
⎜

⎞

⎠
⎟ +

=

U q q q z q z( , , , ) ,i i i iN i
j

N

ij
θ

σ

i1 2
1 (1)

where the value within parentheses, = ∑ =Q qi j
N

ij
θ

1 , is defined as a CES
quantity index, qij is the quantity of product j purchased by consumer
i z, i is the outside or numeraire product, and < <θ0 1, and < <σ0 1
assure concavity of the utility function. The parameter θ ensures that
the products are not perfect substitutes so buyers can, but do not have
to, purchase positive amounts of each product (Nair et al., 2004). This
parameter also ensures that the model generates a positive utility of
variety in equilibrium. With direct utility defined over products, the
buyer chooses the quantity of each subject to the usual budget con-
straint, with income yi, such that the inverse demand for the products
offered by the platform during any particular week is written9:
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We then solve for the direct demand system and substitute the result
back into the utility function in (1) to find the indirect utility for buyer i
choosing the bundle of N products across all categories j as:

= − +−
−

− −V p N y σθ σθ N p y( , , ) (1 )( ) ,i i
σθ

σθ
σ θ

σθ
σθ

σθ i1
(1 )

1 1 (3)

where yi is the amount of the numeraire good, assuming prices for all
products within each category for the platform are symmetric

= ∀p p j( )j , so the CES price index simplifies to: =
−

p N pj

θ
θ

j

1
. We then

use this CES price index to capture the effect of basket-level pricing and
the size of the platform on the probability that each household places an
order during a given week.

We assume that order-preferences are heterogeneous and are ran-
domly distributed over consumers, which allows indirect utility to be
written as:

= − + +−
−

− −V p N y σθ σθ N p y ε( , , ) (1 )( ) ,i i
σθ

σθ
σ θ

σθ
σθ

σθ i i1
(1 )

1 1 (4)

where εi is an iid random error term. Assuming the distribution of
consumer heterogeneity is Type I Extreme Value, and incorporating the
fact that our data is time-series in nature, the probability that buyer i
purchases from the platform at time t is given by:

= > + = +∗P V V ε V VPr( ) exp( )/(1 exp( ))it it it it it it , which results in a fa-
miliar logit model of purchase-incidence, with non-linear utility
(Bucklin and Lattin, 1992; Bell and Lattin, 1998; Briesch et al., 2009).
Based on economic principles, therefore, the probability that a

household purchases on the platform in a given week is a decreasing
function of the average price of the basket of items he or she purchases,
and an increasing function of the number of items available on the
platform.

Our data are collected at the individual-household level, and reflect
specific purchases of surplus food baskets (“boxes”). As a result, both
box-attributes and household preference heterogeneity are likely to be
important in determining the probability that each household pur-
chases a particular box of food from the platform in a given week. If
either of these features of our data are not taken into account, they are
likely to induce substantial bias in all model parameters. Because the
quantity of the numeraire good drops out in finding the logit-prob-
ability term, we write the indirect utility function Vit for estimation
purposes as:

∑ ∑= + + +
= =

V p N f p N σ θ γ z β x εz x( , , , ) ( , | , ) ,i
j

J

j ij
k

K

k k i
1 1 (5)

where f () is the non-linear function of prices and platform size implied
by the CES consumer-preference model above, zis a vector of house-
hold-attributes that reflect a household’s need-based motivations for
purchasing from the site in a given week, while x captures attributes of
the specific box of food items that is purchased.

We calculate a number of need-based variables in z that are com-
monly used to explain purchase incidence, or the probability that a
purchase occurs during a particular week (Bell et al., 1998; Briesch
et al., 2009). Namely: CRi =consumption rate, or the average apparent
rate of fruit and vegetable consumption per household, calculated by
dividing total purchases over the sample period by the number of weeks
the household participates on the site,10 ITTi = inter-purchase time, or
the number of weeks between the previous purchase and current pur-
chase, LQi = lagged quantity, or the number of items purchased on the
previous purchase occasion.

Among our household-level attributes, we expect CR to have a po-
sitive influence on the probability of purchase, all else constant, as
heavier fruit and vegetable consumers are likely to be more frequent
visitors to the site. We expect ITT to have a similar, positive, effect on
the probability of purchase because, at a given consumption rate, the
longer time between purchases implies a greater likelihood that the
household will run out of its preferred items. Lagged quantity LQ( ), on
the other hand, is expected to have a negative effect on the probability
of purchase as stockpiling, to the extent that it is possible with per-
ishable items, reduces the likelihood of need during the next purchase
occasion.

In addition to these measures of household-heterogeneity, we in-
clude a set of basket attributes (x) that consists of: PROM= the dollar
value of any promotion used to purchase a particular box of food by
household i at purchase occasion t ORG, =a binary indicator that as-
sumes a value of 1 if the contents of the box are organic, FR=a binary
indicator that assumes a value of 1 if the box consists entirely of fruit,
VG=a binary indicator that equals 1 if the basket consists entirely of
vegetables, SM=a binary indicator that equals 1 if the box is a “small”
size, MD=a binary indicator that equals 1 for “medium” size boxes,
and LG=1 if the box is “large”. For the categorical variables, the base
case for basket-content is a “mixed” box of food items, while an extra-
large basket serves as the base case for the size indicator.

In the Imperfect Produce data, we have no measures of observed
heterogeneity at the household level (i.e., demographic variables such
as age, income, and education) so we can only control for unobserved
preference heterogeneity at the household level. We control for un-
observed heterogeneity by allowing the key model parameters to vary

8 Note that we cannot assume the products within a particular category are identical
over time as suppliers only deliver what happens to be in surplus at each point in time.

9 Some of Imperfect Produce’s buyers are foodservice operators, so the budget con-
straint does not apply to all. However, management assures us that these buyers are in the
minority, but in number and in volume. Therefore, a consumer-based model is an accu-
rate description of their marginal buyer.

10 For all households, the relevant sample period consists of only those weeks between
the first- and last-purchase weeks. Implicitly, therefore, we assume the households is not
aware of Imperfect Produce prior to their first purchase, and choose not to use the site
after their final purchase.
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randomly across households such that:

̃= +σ σ σ υ υ N, (0,1)i 0 1 1 1 (6)

̃= +θ θ θ υ υ N, (0,1),i 0 1 2 2

where a 0 subscript indicates the parameter-mean, and 1 its standard
deviation, and υk are independent, standard-normal, random variates.
Because the logit expression no longer has a closed form with para-
meters that vary randomly, we estimate the entire Order-Probability/
Order-Size model using simulated maximum likelihood using the al-
gorithm described below.

2.3. Order-size model

In the second-stage model, “Order-Size” demand is represented by a
count-data framework, which is appropriate because our data describes
the number of items (size) purchased with each order. Because size-
demand is a weakly positive, count-variable, we model the size of each
order as a Poisson-distributed variable (Bucklin et al., 1998).11 A count-
data specification is appropriate for this problem because it is reason-
able to expect that once a buyer has decided to purchase, the number of
items is determined by the household’s need for each item, the relative
price of each, and a number of unobserved factors specific to each
household.

Order-size, or the amount purchased, is estimated conditional on
the observation that the buyer visits the platform. On the Imperfect
Product platform, buyers have the option of purchasing either a small,
medium, large, or extra-large box of food, with the number of items in
each box increasing accordingly.12 While buyers likely have many other
alternatives for their fresh produce, our data do not describe their other
purchases, so we focus only on the items chosen from the platform.13

The number of items purchased in each of = …j J1,2, , different box
formats depends on both the realization of utility for buyer i and the set
of observed box-specific attributes described above (xk) and unobserved
household-preference attributes. Unlike the purchase-incidence model
above, the arguments of the purchase-frequency model are intended to
capture volume-preference rather than need-based measures. Assuming
the number of items purchased is Poisson distributed, therefore, implies
that the probability of purchasing Qijt items from the platform in period
t is given by:

= > =
−

− −
P Q q Q

λ λ
λ q

( | 0)
exp( )( )

(1 exp( )) !
,ijt ijt ijt

i i
q

i ijt

ijt

(7)

where λi is the Poisson distribution parameter with:
= + + + ∑ =λ ϕ ϕ p ϕ N ϕ xexp( )i i p N k

K
k k0 1 to ensure that the visitation

probability is strictly positive. Conditional on having chosen to make a
purchase, the quantity purchased is likely to decrease in prices (p) be-
cause box prices rise approximately linearly with item prices. Also
conditional on purchase-incidence, we expect the number of items
chosen to rise in the number of items available on the platform (N)
simply because consumers are assumed to have a preference for variety,
and there will be a higher probability of a preference-match the more
items are available on the site.14 The remaining elements of the box-
attribute vector (x) are the same as in the logit purchase-incidence
model, and we have relatively obvious priors on how each of these
variables is likely to affect the number of items purchased relative to

the base case scenarios. Namely, promotion will be positively related to
the number of items purchased, organic items are likely to be purchased
more often, and smaller-sized boxes will imply a lower number of items.
As in the logit model, we include a measure of unobserved hetero-
geneity in the λi expression that is again assumed to be normally dis-
tributed.

Although the data generating process is, conceptually, maintained
to follow a Poisson distribution, empirical applications of the Poisson
model often find that the data are more disperse than the maintained
distribution would suggest. Practical causes of overdispersion include
settings in which contagion are potentially important, or bandwagon
effects, in which a rise in the number of observations of a phenomenon
is likely to also be associated with a greater dispersion about the mean.
Intuitively, user-networks are likely to succeed, or fail, in spectacular
fashion. Consequently, we begin by estimating a base Poisson model,
and then consider Negative Binomial (NB) alternative as a means of
addressing any overdispersion problem that may arise. We test for the
preferred specification using the Chi-square test developed by Cameron
and Trivedi (1990). In this test, the null hypothesis is that the mean of
the estimated distribution is equal to the variance, while in the alter-
native, the variance is greater than the mean (hence the term over-
dispersion). The CT test for overdispersion essentially involves con-
ducting an ordinary least squares regression of the variance of the fitted
value of the dependent variable on either the mean, or the square of the
mean (Greene, 2003). The resulting test statistic, for the significance of
the regression coefficient, is Chi-square distributed with 1 degree of
freedom.

In our application, we fail to reject the null hypothesis that the
variance of the estimated value of box-size is equal to the mean, but
reject the null if we define the alternative as the square of the mean.
Consequently, we have some support for the maintained hypothesis
that box-size follows a Poisson distribution, but this support is not en-
tirely conclusive. Therefore, we present results from both the NB model
below, and the simpler Poisson alternative.15

As in the Order-Probability model above, we also allow for un-
observed heterogeneity over buyers by allowing critical elements of the
Poisson λijt function, namely prices and network-size, to be randomly
distributed over buyers. Failing to account for unobserved hetero-
geneity in a household-level environment such as ours invites bias in all
parameters. Following the notational convention introduced above, we
allow each parameter to be normally distributed such that the para-
meters are given by: ̃= +ϕ ϕ ϕ υ υ N, (0,1)ik k k k k0 1 3 3 where the υ k3 are
independent, standard-normal, random variates.

2.4. Estimation and identification

We estimate both stages of the platform-demand model together
using maximum likelihood. Combining the Order-Probability and
Order-Size models, the parameters of the fixed-parameter version of the
Logit-Poisson platform-demand model are estimated by maximizing the
log-likelihood function value given by:

∑= ∗ = > ⎞

⎠
⎟ − −LLF P j P Q q Q P jln[ ( ) ( | 0) (1 ( )) ],

T
ijt ijt ijt ijt

d

ijt
d(1 )

ijt

ijt

(8)

where =d 1ijt if buyer i purchases box j from the platform on visit t, and
=0 otherwise. For the random-parameter version of the platform-de-
mand model, we use simulated maximum-likelihood (SML) to recover
both the structural parameters, and the distributional parameters of the
random elements of the model. As is standard in this literature, we use
Halton draws to improve the efficiency of the estimation routine, and
found that there was little difference in the parameter estimates for

11 We describe our tests for overdispersion in Section 2.4.
12 Box sizes vary over time, and with the items chosen, so box size and number of items

are not isomorphic.
13 With data from more than one platform, the platform choice model could easily be

extended to a nested logit framework (Nair et al., 2004).
14 Variety is discovered through the shopping experience, and not advertised ex-

plicitly. Shoppers are allowed to customize their box by first choosing the size of the box,
then choosing whether it contains only fruit, only vegetables, or a mixture of the two, and
can then choose individual elements of the box. More variety implies a greater ability to
substitute items in and out of the box, very similar to a traditional shopping experience.

15 We present the likelihood function for the Negative-Binomial “P” model in the ap-
pendix below, which is a general version of the more usual Negative Binomial model.
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more than 100 Halton draws. The result of this model is demand for
both the platform and the surplus food purchased on the platform.

Before estimating Eq. (8) and the supply of surplus-harvest equa-
tion, it is first necessary to account for the fact that the number of
products and the price index are likely to be endogenous. Therefore, we
estimate the platform-demand model using a control function approach
(Petrin and Train, 2010), using raw commodity and other operating
input prices as instruments for retail prices, and commodity shipment
levels as instruments in the demand equation. Specifically, the USDA
reports a full set of wholesale prices for fresh fruits and vegetables in
California on a weekly basis, so these farm-gate prices constitute clear
candidates for retail-price instruments. Wholesale prices for a range of
fresh fruits and vegetables are the primary cost-element for Imperfect
Produce, so are likely to be closely related to the retail prices they
charge users. However, because Imperfect Produce is an infinitesimally
small player in the US fresh produce industry, the prices they pay to
farmers are plausibly unrelated to the demand for produce in general.
Therefore, wholesale produce prices are likely to be excellent retail-
price instruments. We also include a non-linear time trend to account
for any movements in retail prices that may be driven by the same,
more general, cycles that drive Imperfect Produce’s pricing strategy.

A first-stage regression of retail prices set by Imperfect Produce on
indices of fruit and vegetable prices, and time-trends, produces an F
-statistic of 10,564.36 and a R2 value of 0.18. Based on these estimates,
we can safely conclude that our wholesale price indices are not weak
instruments for retail prices (Staiger and Stock, 1997), and economic
reasoning suggests that are likely to be appropriate as well.

For network size, we face a fundamental dimensionality problem in
identifying the effect of network size on platform demand. Namely,
over the data period IP offers some 450 different items for sale through
either their vegetable, fruit, or mixed boxes. And, our prices are re-
ported on a per-box basis and not a per-item basis. Therefore, recording
and matching item-level instruments is neither feasible, nor desirable.
We capture wholesale movements in the produce offered for sale by IP
by using indices of fresh fruit and vegetable prices reported by USDA
for the state of California. Our instrument for network size exploits the
uncertainty of agricultural production, and the economic rationale for
establishing food-based CPMSs. That is, IP exists in order to create a
market for surplus produce. In few other industries is there a greater
difference between planned and actual production output, because
yields and grades are largely determined by environmental conditions
such as heat, rain, or wind, and not necessarily by conscious manage-
ment decisions. These features of the biological production process
mean that observed production levels for specialty crops are exogenous
to the demand for the IP platform, and yet correlated with the number
of items that appear on the site.

Our instrument consists of an index of commodity movement vo-
lumes using the USDA Agricultural Marketing Service Market News
Service website. For the 60-week sample period, we created a straight
sum of weekly shipments in the Southern California district (in
10,000 lb units) for the top 20 commodities that appear on the IP
website. Because of the wide range of specific items offered on the site
(an average of some 450 products), tracking every one of them through
the AMS site is intractable. However, we assume that higher volumes of
the most popular items are correlated with production, and shipment
levels, of all speciality items. That is, overproduction for the most
common commodities will be correlated with overproduction of all
commodities within a single growing season. Our index, therefore, is
expected to be positively correlated with the amount of surplus growers
find on their hands, and the range of items that appear for sale on the
site. First-stage IV regressions using this index find an R2 of 0.66 and an
F value of 125,553.09, so our network-size instruments again cannot be

considered weak according to the criteria described in Staiger and
Stock, 1997.

2.5. Equilibrium provision of surplus food

Next, we model the equilibrium provision of surplus food, or the
number of products offered on the platform, and the price at which they
are offered. Following Richards and Hamilton (2013) and Nair et al.
(2004), we assume the price of surplus food and the number of items
offered on the platform are determined by solving the joint profit-
maximization condition for the optimal amount and price for surplus
harvest. Solving for the supply of surplus food products on the platform
and the average price offered on the platform then allows us to derive
hypotheses regarding the effect of shocks to platform demand on the
price, supply of products offered, and profitability of the platform itself.
As a structural model of surplus-food supply, the supply-side of our
model allows to test the relative importance of platform-size and con-
sumer traffic on the viability of our surplus-food CPMS.

At this time there are only a handful of firms in the surplus-harvest
market in California. Still, pricing and output decisions are conditioned
by the greater produce market as consumers have access to fresh pro-
duce that is closely substitutable for that sold by Imperfect Produce.
Therefore, we assume platforms set category-level prices and assort-
ments in a Bertrand-Nash manner for each category in the store. We
derive the optimal retail pricing model first, followed by an expression
for variety, or assortment depth.

Conditional on prices set by suppliers, the profit expression for the
platform in time period t is written as:

= − − −E Q p r w v NΠ [ ]( ) ( ),t t t t t t (9)

where rt is the constant cost of selling, wt is an average wholesale price,
v N( )t is the cost of expanding the size of the platform, and E Q[ ]t is the
expected sales during week t, which is the product of the probability of
household-purchase and the number of items purchased, aggregated to
the market level. We follow Draganska and Jain (2005) in defining the
cost of variety as a quadratic: = +v N γ N γ N( ) (1/2)t t t0 1

2, which is ap-
propriate as restocking costs can be expected to rise in a non-linear way
with the number of products to be monitored, stored, re-shelved and
priced. With this assumption, the platform’s first-order condition in
prices is given by:

+ ∂
∂

− − =E Q E Q
p

p r w[ ] [ ] ( ) 0,t
t

t
t t t

(10)

reflecting the local-monopoly assumption that the platform considers
only the demand for their own products in setting prices. Stacking the
first-order conditions for all items offered on the platform and time
periods and solving for retail prices in matrix notation gives:

= + − −ψE Ep r w Q Q[ ] [ ],p
1

(11)

where p is a JTx1 vector of prices (J boxes, T weeks), w is a JTx1 vector
of wholesale prices, r is a JTx1 vector of product-specific selling-input
prices, E Q[ ] is a JTx1 vector of expected quantities, and E Q[ ]p is a di-
agonal JTxJTmatrix of expected-quantity-derivatives with respect to all
retail prices. In the Imperfect Produce data, we do not observe the
specific wholesale prices paid, so they are approximated by the indices
of fruit and vegetable farm-gate prices described in more detail below.
We parameterize these indices in the marginal cost equation as their
true relationship with marginal cost is unknown, and must be esti-
mated.

We estimate unobserved selling costs as a linear function of input
prices, which is common practice in this literature (Berto Villas-Boas,
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2007; Richards and Hamilton, 2015). Specifically, we write the con-
stant marginal cost of selling as: = + ∑ =r δ δ vjt l

L
l l0 1 , where v is a vector

of input prices that includes a weekly measure of wages in the food
retailing industry, an index of cardboard-box prices, a utility price
index, and an index of energy costs. Finally, we parameterize the third
term in Eq. (11) with a conduct parameter, ψ, to measure any departure
from the maintained Bertrand-Nash pricing environment faced by Im-
perfect Produce. As is well understood in this literature, a value of =ψ 1
indicates that Imperfect Produce is able to price as a Bertrand-Nash
oligopolist, but a value of =ψ 0 suggests that pricing approximates a
perfectly competitive ideal.

Similarly, the first-order condition for optimal platform size is given
by:

∂
∂

− − − ∂
∂

=E Q
N

p r w ν
N

[ ] ( ) 0,t

t
t t t

t (12)

where ∂ ∂ν N/ t is the marginal cost of augmenting the assortment, or
increasing the size of the network. The first-order condition for plat-
form size is also stacked over boxes and weeks to find:

= − −ν E E EQ Q Q[ ] [ ] [ ],N N p
1

(13)

where = +ν γ γ NN 0 1 is the marginal cost of adding to the network, and
E Q[ ]N is again a diagonal matrix of expected-quantity derivatives with
respect to platform size. With this assumption, the estimated network-
size equation is given by:

= − −−τ E E E τN Q Q Q[ ] [ ] [ ] ,N p1
1

0 (14)

where =τ γ γ/0 0 1 and =τ γ1/1 1. Network size is a function of the equili-
brium retail markup in (11), so the size of the network offered by the
platform is function of wholesale prices. By estimating both margins
and equilibrium network size together, we endogenize both decisions
made by the platform manager, and thereby test the relative strength of
network size on consumer demand for the platform, and the incentive
to expand the number of products offered on it.

In the equilibrium-supply model derived in this section, we test the
relative importance of consumer traffic and network size by estimating
the equilibrium pricing and network-size equations together, and
testing the importance of network size both directly and indirectly. Our
direct test is a simple t-test of the sign and significance of the τ1 para-
meter. In equilibrium, the marginal cost of adding another supplier
must equal the marginal benefit. In equilibrium, if the value of τ1 is
positive, then adding another supplier provides positive incremental
profit to the platform, all else constant. Because p and N are determined
in equilibrium, however, we estimate the importance of indirect net-
work effects by varying the level of N parametrically, and measuring
the resulting impact on equilibrium margins by simulating our struc-
tural price- and network-model. Conditioned on the model of demand
that drives both equilibrium pricing and margins, if a larger network
causes margins to rise, then we have evidence of indirect network ef-
fects in the surplus-produce market.

On the supply side, the imputed-margin values, and marginal-value
of network size are also likely to be endogenous. In order to instrument
variables that reflect decisions taken by platform managers, we require
variables that reflect demand-side shocks – shocks that are likely to be
correlated with profitability and growth-potential, yet mean-in-
dependent of retail prices, and network-size, respectively. Given the
limited data that we have available, the set of instruments for both
equations are similar. Specifically, we capture box-specific demand
shocks by including a vector of box-fixed effects. Second, we include
our index of weekly fruit and vegetable shipments in order to capture
any changes in demand that derive from the wider market for fruits and
vegetables. Third, we capture any temporal changes in demand for the
platform by including both a linear and quadratic time trend. Finally,
we control for any remaining dynamic changes in demand by including
lagged values of the imputed margin from Eq. (11), the marginal value

of network size from Eq. (13), and lagged values of network size and
retail price. For the pricing equation, a first-stage instrumental-vari-
ables regression produces an F-statistic of 15.03, and for the endogenous
network size, these instruments produce an F-statistic of 15.16. In nei-
ther case can the instruments be described as weak (Staiger and Stock,
1997). In the Results section below, we present estimates from both an
IV and non-IV supply model in order to demonstrate the importance of
controlling for endogeneity our system.

3. Data

Our data are from Imperfect Produce, Inc. Imperfect Produce began
operations in mid-2015 with just over 1000 customers, and by early
2017 had grown to over 7500 customers. A cofounder of Imperfect
Produce, Ron Clark, spent decades in the produce industry in California,
and worked closely with the California Association of Food Banks.
Through this association, he realized that there should be a market for
surplus produce, or produce that does not make either formal grades set
by either state marketing orders, or informal standards set by retail and
foodservice buyers.16

Originally motivated by purely environmental and other social
concerns, Imperfect Produce adopted, and adapted, a number of busi-
ness practices over time in order to achieve financial independence.
Imperfect Produce serves as an online, and real-life, platform that
connects growers who have fresh fruit and vegetable items that either
represent surplus harvest over contractual obligations or do not con-
form with usual size and quality standards in the grading process with
retail or foodservice buyers looking for either low-cost meal ingredients
or for “unloved” produce that they do not want to see go to waste. The
key to the success of the Imperfect Produce platform is the immersive
use of technology, from a state-of-the art mobile application to in-
ventory-optimization software that rivals systems employed by larger,
more established food distributors.

Similar to CPMS firms in other industries, Imperfect Produce re-
cognized early on the value of data-capture, and data analytics in op-
timizing delivery schedules, and the mix of produce that they would
want to source. Consequently, Imperfect Produce maintains a detailed
database of every transaction they have ever executed, including all
price, volume, and item specifications, as well as the amount of any
promotion that was offered. Their data base provides a detailed de-
scription of the nature of each item, and how the customer assembled
the box that they purchased. Box-prices for each transaction reflect a
fixed amount for the box itself, and a variable amount for each item.
After 2 years of operation, they have a detailed data set of every
transaction, one that mimics the type of data collected by larger su-
permarkets, with millions more transactions. Imperfect Produce also
captures all of their purchase-transactions, which we describe in more
detail below.

Our data capture the entirety of transactions on the surplus food
platform for the 60-week period from January 1, 2016 through
February 28, 2017.17 We observe the identity of the purchaser, the
specific box that was purchased, the date it was purchased, the number
and identity of the items in the box, the total amount spent, and the
amount of any promotion used to capture the sale. Unfortunately, we
have no demographic data on the purchasers to control for observed
heterogeneity in preferences, although we do control for unobserved

16 None of the marketing orders, or fruit and vegetable lobby groups, that we spoke
with had any objection to the existence of firms selling off-grade produce because they
represent ready markets for secondary-produce, create new markets for produce that
would otherwise be thrown away, and enjoy overwhelming support from growers and
packers. Implicitly, they support the price-discrimination role of secondary produce
markets described in the Introduction.

17 Our complete data set also contains transactions from September 1, 2015 to
December 31, 2015, but IP substantially changed their box-labeling system on January 1,
2016, so we removed the earlier transactions due to a lack of comparability across boxes.
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heterogeneity in the estimates presented below. All of our estimates are
sufficiently precise that the lack of demographic data is not a great
concern.

Table 1 summarizes the demand-side data. Perhaps most im-
portantly, the summary data demonstrates considerable variation in the
size of the Imperfect Produce platform, which varies from a low of 29
unique items to a high of 83 over the sample period. This suggests that
variation in demand related to platform size is well-identified. Our
summary data also show that customers demand a wide range of dif-
ferent boxes, and that order sizes can vary from small, single-box or-
ders, to large orders in the hundreds of dollars. In terms of the attributes
of each order, over 1/4 of all boxes are organic, and the vast majority
consist of a mix of fruits and vegetables. Further, the plurality of boxes
ordered are small, and the next most popular size is medium. Based on
an average consumption rate of only 6.5 items per week (or roughly one
per day), the popularity of small boxes is not surprising. That said, this
consumption rate suggests that households using the Imperfect Produce
platform are obtaining a substantial proportion of their fresh produce
needs this way. In general, therefore, this summary data shows that
there is likely sufficient variation in the data to identify the key para-
meters in our demand, and supply models, and that the Imperfect
Platform plays an important role in users’ shopping plans.

We first use the IP data to determine whether there is summary
evidence that the volumes of produce traded through the Imperfect
Produce platform are related to the number of suppliers delivering
produce to the site. Using the transactional data summarized in Table 1,
we show how much fresh produce has been sourced from growers over
the first four years of operation, and how much has been transacted to
buyers. Viability in two-sided networks is completely determined by
demand from both sides of the market – from those who demand dis-
tributional services, and those who demand the end-product. In Fig. 1,
we show that variation in user traffic appears to be positively related to
changes in the number of suppliers to the platform, which is necessary
for indirect network effects to arise. However, graphical evidence
cannot control for many, potentially confounding factors.

We examine this question more closely by examining the data in
Fig. 1 using a reduced-form approach in order to determine if sales
volume is related to the number of items offered on the platform, and

whether any relationship is robust to controlling for other factors that
may explain the co-movement of traffic and supplier interest. Table 2
presents estimates from 3 models, each with slightly differing controls.
In the first model (Model 1), the estimates show that price is the
strongest determinant of sales volume, as expected, but the number of
items offered on the platform, nonetheless, remains an important de-
terminant of platform traffic. As in all of the reduced-form models, the
attributes of each box are also important.

In the next model (Model 2), we control for promotional spending
because, as a startup, Imperfect Produce invested substantial amounts
in building traffic. Controlling for spending does not alter the im-
portance of price, and actually leads to a stronger role for platform size.
Finally, we account for any temporal effects associated with platform
demand in Model 3. Including a quadratic time-trend reduces the size of
the price coefficient only slightly, and reduces the importance of net-
work size by roughly 50%, but there appears to be no non-linear time-
effects in the data. Because our data captures the latter part of their
initial growth phase, controlling for a linear trend term is critical in the
structural model below. In summary, our reduced-form evidence sug-
gests that the number of suppliers, or platform size, appears to be cri-
tical to growing demand for a surplus-produce platform.

We also have access to all of the firm’s purchase data, albeit in lesser
detail than the transaction data described above. While we have records
of individual purchases, so we can track what was purchased and whom
it was purchased from, we do not have volume data specific enough to
assign a cost to each individual item. Nonetheless, we have total pur-
chasing costs by week and, given that Imperfect Produce does not hold
substantial inventories of any item, we are able to impute a rough es-
timate of their gross margin over time. While volume is a necessary
condition for success, it is not sufficient without a margin-generating
mechanism. Some platforms in the surplus harvest business serve as
brokers, extracting a fee on each transaction negotiated between a
farmer with surplus produce, and a retail or foodservice buyer.
Imperfect Produce, on the other hand, conducts business as a traditional
middleman, taking title to the produce purchased from growers, and
selling for their own account to individual customers. In Fig. 2, we show
how Imperfect Produce’s gross margin has varied over time, by month,
and how the margin has varied with the number of items offered on the
site. Interestingly, there appears to be a strong, positive relationship
between gross margin and the number of items offered on the site over
the first 12months of our sample period (calendar 2016) (linear re-
gression coefficient= 3299, t-ratio= 2.352), the relationship all but
disappears over the final 2months of the sample (linear regression
coefficient= 324, t-ratio= 0.291). Although January and February are
relatively slow months in the fresh produce business, Imperfect Produce
management assures us that these months were not out of the ordinary.

Data for our instruments and selling costs are from the USDA,
Agricultural Marketing Service and the Bureau of Labor Statistics.
Specifically, the fresh produce price indices and shipment values are
from the USDA, on a monthly basis. We do nos adjust the monthly
frequency to smooth out variation to estimate with the other, weekly
data series.18 Our input price series are from the Bureau of Labor Sta-
tistics, Producer Price Index series, again on a monthly basis. We cap-
ture labor costs, which are the largest component of selling costs, by
including a measure of weekly compensation to workers in the food
retailing industry. Another large, and unique, cost item for Imperfect
Produce is the price of boxes used to deliver items to retail customers.
We measure the cost of packaging with a monthly index of prices
earned by cardboard-box manufacturers. Utility and fuel costs are also
producer-price indices for generators and distributors of electricity, and
fuel wholesalers, respectively. Although Imperfect Produce faces a
number of other costs of doing business, our price indices are likely to

Table 1
Data summary.

Variable Units Mean Std. Dev. Min. Max. N

Number of items # 46.3801 14.5647 29 83 201836
Box size # 7.5409 3.9272 4 12 201836
Order dollars $ 20.3375 11.1023 6 450 201836
Order items # 13.5346 7.6526 4 381 201836
Promotion dollars $ 0.2719 2.3352 0 140.12 201836
Item price $/Item 1.5710 0.2727 0.38 11.18 201836
Organic % 26.4185 44.0899 0 100 201836
Fruit % 1.9283 13.7518 0 100 201836
Vegetable % 2.2389 14.7947 0 100 201836
Small % 24.5338 43.0288 0 100 201836
Medium % 21.2296 40.8934 0 100 201836
Large % 4.4452 20.6097 0 100 201836
Consumption rate Items/Week 6.5507 3.5494 1.19 72.46 201836
Box 1 % 0.9840 9.8706 0 100 201836
Box 2 % 0.9443 9.6717 0 100 201836
Box 3 % 0.6733 8.1779 0 100 201836
Box 4 % 1.7262 13.0245 0 100 201836
Box 5 % 8.9355 28.5256 0 100 201836
Box 6 % 15.0835 35.7889 0 100 201836
Box 7 % 0.7030 8.3553 0 100 201836
Box 8 % 2.7190 16.2638 0 100 201836
Box 9 % 10.2608 30.3447 0 100 201836
Box 10 % 7.3163 26.0405 0 100 201836
Box 11 % 1.0494 10.1900 0 100 201836
Box 11 % 1.1896 10.8417 0 100 201836

Note: Data from Imperfect Produce, LLC.

18 While doing so is common, we believe fitting a cubic-spline, or similar smoothing
method, imputes artificial variation in the data that is likely to be misleading.
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capture most of the variation in the marginal cost of buying, handling,
and distributing surplus produce.

4. Results and discussion

We first present our estimates of the demand-side model, followed
by estimates of the pricing-and-network size model, and then demon-
strate the importance of our findings for food policy through numerical
simulation. Within each stage, we present estimates from a range of
specifications to evaluate the robustness of our model and conduct a
series of specification tests to determine the preferred model.

4.1. Platform demand estimates

In this section, we begin by presenting the estimates from each of a
series of platform demand models, and then interpret our findings from
the best-fitting specification of the model. Table 3 shows our platform
demand estimates. Our initial specification, which is not shown in the
table, maintains a simple Logit-Poisson process; however, tests for
overdispersion revealed that the Negative Binomial was preferred
(χ2 =640.7). Within the class of Negative Binomial models, moreover,
the Negative-Binomial-P (NBP) model, which is the most general spe-
cification we estimate, is the preferred model. Consequently, the entries
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Fig. 1. Users and products by week.

Table 2
Reduced-form sales volume regression.

Model 1 Model 2 Model 3

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant 34.3496∗ 0.1444 33.1989∗ 0.1393 32.6954∗ 0.1605
Price −7.2329∗ 0.0684 −7.2331∗ 0.0657 −7.0529∗ 0.0691
Number of items 0.5574∗ 0.1045 0.9407∗ 0.1005 0.4071∗ 0.1552
Organic 3.8004∗ 0.0334 3.6792∗ 0.0321 3.6016∗ 0.0330
Fruit 0.2259∗ 0.0738 0.1935∗ 0.0709 0.1797∗ 0.0709
Veg 0.0445 0.0691 0.0608 0.0664 0.0519 0.0664
Small −15.0453∗ 0.0870 −14.1162∗ 0.0842 −14.1456∗ 0.0843
Medium −12.0483∗ 0.0860 −11.2289∗ 0.0832 −11.2091∗ 0.0831
Large −6.7192∗ 0.0952 −6.0758∗ 0.0918 −6.0557∗ 0.0917
Promotion 0.3793∗ 0.0041 0.3807∗ 0.0041
Week 0.0185∗ 0.0043
Week2 −0.1105∗ 0.0726

R2 0.4582 0.4997 0.5002
F 11,006.35 11,554.05 9,472.21

Note: A single asterisk indicates significance at a 5% level. Data are at the household level, on a weekly basis.

T.J. Richards, S.F. Hamilton Food Policy 75 (2018) 109–123

117



in Table 3 present the results of three different versions of the Logit-
NBP model.

Model 1 in Table 3 makes no attempt to control for endogeneity of
either the platform price or the size of the network (number of items
offered). Identifying network effects when both variables are en-
dogenous is the focus of much of the recent empirical network eco-
nomics literature (Jeziorski, 2014, for example), effects of particular
importance in our setting given the intent of the purchase incidence
model to capture need-based motivations for visiting the Imperfect
Produce site. Because the incidence and purchase quantity equations
are estimated together, we include controls for endogenous prices and
network size in Model 2 to remove any bias that may be transmitted to
the incidence equation. Comparing the estimates in Model 2 to those in
Model 1, we see that Model 2 is preferred (χ2 =21,668, based on a
likelihood-ratio test) and removes a substantial amount of bias from the
key parameters in the incidence model, σ and θ.

Model 3 accounts for unobserved heterogeneity by allowing for
random household-level parameters. Comparing the fit of Model 2 to
Model 3 reveals Model 2 to be the preferred specification. Although the
scale parameters on the σ and θ are statistically significant, they are
very small in magnitude, which indicates that heterogeneity is not an
important consideration. For this reason, we use the estimates from
Model 2 to test our hypotheses regarding the importance of network-
size on demand, and to condition our supply-model estimates to follow.

Based on the Purchase Incidence estimates in Table 3, it is apparent
that consumption rate, inter-purchase time, and the amount purchased
on the previous visit are all critically important in the binary decision to
order surplus food from the platform. This result is not surprising in
light of the prior empirical literature on purchase incidence (Briesch
et al., 2009). Conditioned on these variables, we also find that

promotions are not important drivers of site traffic, but that the attri-
butes of the order are important. Customers prefer organic boxes, either
in a small or medium size, consisting of a mix of fruits and vegetables.

With respect to the Purchase Quantity component, the estimates in
the bottom panel of Table 3 are statistically significant in determining
the amount purchased in each order. The estimated value for the Net-
work Size variable implies a net marginal effect of 0.05, meaning that an
increase of one item in the assortment on offer will result in an expected
increase of 0.05 items per week, accounting for the equilibrium effect on
purchase incidence, and the number of items purchased if an order is
placed. In elasticity terms, this estimate suggests a network-size elas-
ticity of 0.23, which implies that a 10% increase in network size can be
expected to result in a 2.3% increase in expected sales. The price elas-
ticity implied by the estimates in Table 3 is −0.15, which indicates that
the quantity response to changes in surplus food prices is highly in-
elastic. This is perhaps to be expected given that the clientele for Im-
perfect Produce may order surplus food not only for the purpose of
obtaining inexpensive produce, but also to contribute to resolving the
problem of food waste. Unlike in the incidence model, we find that
promotion has an important impact on the quantity purchased, and that
users tend to order significantly more surplus food items when pur-
chasing organic relative to conventional produce.

As in the incidence model, we find that the controls for the en-
dogeneity of price and network size are statistically significant. The
importance of controlling for endogeneity is emphasized by comparing
the estimates from Model 2 to those of Model 1. While there appears to
be little bias in estimated price effect, the marginal effect of network
size is estimated with substantial bias in the non-control function
model. These demand estimates, in turn, drive the equilibrium supply
model estimates described next.
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Table 3
Demand estimates: logit/NB-P model.

Model 1 Model 2 Model 3

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Logit purchase incidence model
σ 0.7736∗ 0.0905 0.7909∗ 0.1197 0.7790∗ 0.0938
σ(s) 0.0100∗ 0.0023
θ 0.7342∗ 0.2752 0.7406 0.4646 0.7362∗ 0.1597
θ(s) 0.0094 0.0064
Consumption rate 30.6115∗ 0.1214 30.6144∗ 0.1221 30.6124∗ 0.1195
Inter. time 21.2850∗ 0.1263 21.2863∗ 0.1270 21.2854∗ 0.1176
Lagged Q −4.1132∗ 0.0550 −4.1098∗ 0.0555 −4.1121∗ 0.0438
Promotion −0.2807∗ 0.0020 −0.2122∗ 0.0019 −0.2583∗ 0.0016
Week −6.9485∗ 0.0348 −6.9299∗ 0.0421 −6.9425∗ 0.0357
Organic 0.1746∗ 0.0786 0.1925∗ 0.0998 0.1800∗ 0.0728
Fruit −6.3739∗ 0.1073 −6.3655∗ 0.1332 −6.3712∗ 0.1036
Vegetable −4.5805∗ 0.1733 −4.5717∗ 0.2000 −4.5777∗ 0.1386
Small 7.9059∗ 0.0974 7.9236∗ 0.1420 7.9113∗ 0.0953
Medium 6.4082∗ 0.1002 6.4257∗ 0.1467 6.4138∗ 0.1032
Large 3.0118∗ 0.1033 3.0207∗ 0.1504 3.0146∗ 0.0610
Price control 0.5004∗ 0.0399 2.7108∗ 0.0306
Network control 0.4998∗ 0.0851 7.2893∗ 0.0745

NB-P purchase quantity model
Constant 3.9838∗ 0.0018 3.9856∗ 0.0024 3.9852∗ 0.0001
Price −0.7018∗ 0.0006 −0.7103∗ 0.0012 −0.6997∗ 0.0008
Network size 0.0155∗ 0.0002 0.0150∗ 0.0002 0.0040∗ 0.0000
Promotion 0.0286∗ 0.0002 0.0292∗ 0.0002 0.0332∗ 0.0000
Organic 0.3316∗ 0.0007 0.3189∗ 0.0013 0.3307∗ 0.0003
Fruit −0.0040 0.0044 −0.0030 0.0042 −0.0039 0.0043
Vegetable −0.0170∗ 0.0070 −0.0165∗ 0.0065 −0.0170∗ 0.0067
Small −0.8517∗ 0.0007 −0.8613∗ 0.0022 −0.8520∗ 0.0003
Medium −0.5828∗ 0.0020 −0.5758∗ 0.0019 −0.5820∗ 0.0011
Large −0.2569∗ 0.0005 −0.2537∗ 0.0015 −0.2565∗ 0.0003
Lambda(s) 0.0351∗ 0.0000
Price control 0.4886∗ 0.0003 −0.0149∗ 0.0000
Network control 0.4986∗ 0.0011 0.0099∗ 0.0001
T 0.0054∗ 0.0008 0.0059∗ 0.0003 0.0455∗ 0.0000
Q 6.4870∗ 0.0059 6.4870∗ 0.0088 6.4870∗ 0.0001

LLF −540739 −558033 −542233
AIC 5.6130 5.793 5.629

Note: Model 1= Logit/NB-P model without controls, fixed parameters.
Model 2= Logit/NB-P model with controls, fixed parameters.
Model 3= Logit/NB-P model with controls, random parameters.

Table 4
Pricing and platform size model estimates.

Model 1 Model 2 Model 3

Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Network size model
Constant 4.3560∗ 0.0577 4.3570∗ 0.0613 4.0172∗ 0.0324
Marginal network value 0.2627∗ 0.1180 0.2580∗ 0.1143 0.5517∗ 0.1984

Retail margin model
Constant 3.0186∗ 0.2279 2.7757∗ 0.2132 2.4422∗ 0.3821
Fruit price −1.0351∗ 0.1513 −0.9000∗ 0.1507 −0.5052∗ 0.2282
Veg price −0.1452∗ 0.0738 −0.0824 0.0680 −0.4967∗ 0.1206
Retail wage 0.7122∗ 0.0751 0.6470∗ 0.0848 0.9139∗ 0.0856
Box price −0.8222∗ 0.0709 −0.7138∗ 0.0802 −0.8702∗ 0.0716
Utility price −0.2352 0.2121 −0.3042 0.3243 −0.8032∗ 0.1772
Fuel price −0.2357∗ 0.0253 −0.2003∗ 0.0385 −0.2260∗ 0.0211
Conduct parameter 0.0926∗ 0.0470 0.0897∗ 0.0452 0.5519∗ 0.1769

R2LLF/G 0.261 706.094 263.691
R2 Eq. (2) 0.007

Note: Model 1 is independent equations.
Model 2 is NLSUR with no endogeneity controls.
Model 3 is GMM with margin- and network-instruments. A single asterisk indicates significance at 5%.
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4.2. Pricing and network size

Conditioned on consumer preferences for platform size and prices,
the supply estimates test for the effect of network size and equilibrium
pricing. In this model, we control for the simultaneous influences of
pricing and demand on the marginal value of increasing the size of the
platform. Although our demand estimates above show that consumers
have a positive marginal value of network-size, the converse must also
be true to create a “virtuous cycle” of indirect network effects: Namely,
suppliers must also value consumer traffic and be more likely to use the
platform as the size of the network increases. In our model, we infer the
demand for platform services by estimating the marginal value of net-
work-size demand by the platform manager. In Table 4, this estimate is
shown by the value of τ1, which is the equilibrium marginal value of N
from the manager’s perspective.

Notice that our estimates of τ1 in Table 4 are remarkably robust
across the three specifications we consider. In Model 1, we estimate τ1
independent from the equilibrium-pricing equation, while in Model 2
we estimate both equations together, but without endogeneity controls.
In Model 3, we estimate both equations together, and with endogeneity
controls. Because the estimators are different for each model, we
compare goodness-of-fit using a simple non-nested comparitor, the
pseudo R2. By this measure, we see that Model 3 provides the best fit to
the data, while also controlling for the endogeneity of both marginal
network value, and retail margins.

Model 3 reveals the marginal network value estimate to be positive
and significant, as in the other models, but with a magnitude that is
more than twofold the size. Both the margin and network-value models
in Table 4 are estimated in money-metric terms, which allows us to
interpret this estimate as the marginal value to the network operator,
per box, of an additional item in the assortment, or "$"0.55/item. Based
on an average box price of "$"6.47 (box size times item price in Table 1),
this estimate represents fully 8.5% of the retail value of a box. More
importantly, it suggests that, in equilibrium, the platform manager is
willing to pay "$"0.55/item on a per-box basis, for another item in the
assortment. Because this is an estimate of the equilibrium value, it
suggests that there is a significant, positive value to distribution
through the platform from produce suppliers. Put differently, our esti-
mate implies that suppliers are willing to accept "$"0.55/item for dis-
tribution, indicating that when consumers demand more items on the
platform suppliers demand greater distribution through the platform.

Estimates from the pricing model in Table 4 show how properly
accounting for the endogeneity of network size can have dramatic ef-
fects on the degree of market power exercised by the platform manager.
While estimating either the pricing- and network-size equations sepa-
rately (Model 1) or without endogeneity controls (Model 2), the out-
come implies nearly-competitive pricing conduct (ψ is near zero in each
case); however, when the marginal value of N and retail margins are
properly instrumented, the estimate of ψ is closer to Bertrand-Nash
behavior than to competitive pricing. Consequently, this finding sug-
gests that platform managers in CPMS markets such as this are able to
exploit indirect network effects to generate much higher margins than
would otherwise be the case.

4.3. Policy implications

In this section we numerically characterize the policy implications
of subsidizing CPMS markets to reduce the amount of produce that is
not purchased for human consumption. Our numerical model illustrates
the importance of platform size, the demand for distribution services by
providers, the demand for surplus food by consumers, and platform
pricing in determining surplus food transactions on the CPMS platform.
We allow for endogenous consumer demand, retail prices (and mar-
gins), and network-size in our numerical model, which allows us to
demonstrate the importance of indirect network effects in the market by
varying parameters in consumer demand and by introducing our key
food policy instruments. We first examine the effect of changes in
consumer acceptance for surplus food.

Table 5 presents estimates of the retail margin, and platform-de-
mand for network-size by varying consumer demand for surplus food.
Specifically, we vary the key parameter in the Order-Size demand
model, ϕN in Table 3, that measures consumers’ preferences for pur-
chasing surplus food on the CPMS platform. Increasing consumers’
preference for the number of items available on the platform should
lead to three effects: (i) higher prices; (ii) an increase in the number of
surplus food items offered on the platform; and (iii) indirectly through
prices, reduced quantity demanded for each surplus food product on the
platform.19 Our numerical simulation precisely reveals these effects.
Higher values of ϕN are indeed associated with significantly higher
retail prices (and margins) and a significant increase in network size.
The reason is that a positive shock in consumers’ preferences for pro-
duct variety causes vendors to respond by placing a greater number of
products on the platform, increasing demand for each item on the
platform, resulting in higher equilibrium prices. These are the necessary
ingredients for producing indirect network effects: Platform managers
are able to leverage greater demand from one side of the market
(consumers) to increase demand for distribution from the other side of
the market (suppliers) in a virtuous cycle that raises platform rents.

We are now ready to examine the policy implications of our findings
for surplus food. Specifically, we consider a price-based incentive,
which we refer to as an “ugly food” subsidy, that provides a price in-
centive for consumers to purchase surplus food on the CPMS platform.
Table 6 shows the effect of an ad valorem subsidy on produce pur-
chased on the platform, where we define the net price paid by con-
sumers as = −p η p p(1 ) , as the list price and η as the subsidy rate.

Given the non-linearity of the structural model, the effect of varying
the subsidy from 10% through 90% results in a highly non-linear re-
sponse for both the equilibrium price and the number of suppliers. A
relatively small subsidy level (25%) produces only modest changes in
the overall size of the network (48.5 versus 46.9 products on offer),
while the effect on price is more substantial ("$"1.72/item versus
"$"1.57/item). The total quantity of surplus food purchased on the
platform rises from 17.42 to 27.92 items per order – a 60% increase that
siphons surplus food products onto the platform that would otherwise
result in food loss.20

Table 5
Counter-factual simulation of indirect network effects.

ϕN Price Std. Dev. t-ratio Network Std. Dev. t-ratio

100% 1.5968∗ 0.2855 2.4807 51.2097∗ 12.2843 12.6246
50% 1.5838 0.2790 1.2460 48.6327∗ 9.7849 6.8530

0 1.5710 0.2727 46.3802 7.7350
−50% 1.5584 0.2666 −1.2566 44.4179∗ 6.1383 −7.5409

−100% 1.5459∗ 0.2607 −2.5234 42.7151∗ 5.0222 −15.0809

Note: Simulation conducted with estimates in Table 4. A single asterisk indicates sig-
nificant difference at a 5% level.

19 We assume that quality does not decline in response to a demand shock. When
demand rises, managers at the firm reach out to more suppliers, and source more volume
from existing suppliers. Still, they offer produce with only cosmetic imperfections, and
never nutritional or eating deficiencies.

20 Surplus food sold through Imperfect Produce may have otherwise been used for
animal feed, composted, or used in some other, low-value purpose. However, we cannot
make a general statement as to alternative destinations for the food sold through the
platform. Ben Chesler, CEO of Imperfect Produce, states that “…It is very specific to the
item and specific purchase. Generally it goes to waste but we avoid making broad claims
like that. Some goes to waste, some foes to animal feed, some goes to processors…” More
generally, our assumption on this point is that the farmer allocates surplus harvest to its
highest and best use. By creating an active market for produce, in direct-consumption
form, the value of food sold through IP is likely to be (we do not have prices for alter-
native uses such as feed or processing) much greater. While this is not reducing waste in
the sense of Bellemare et al. (2017), we agree with Buzby et al. (2011) who argue more
generally that food losses include the degradation in value of food such that it cannot be
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At higher subsidy levels (90%), the effect on network size increases
sharply (75.33 versus 46.9 products on offer), while the price effect is
moderate ("$"2.11/item versus "$"1.57/item). The increase in the quan-
tity of surplus food sold on the platform is substantial, more than tri-
pling the quantity of surplus food purchased on the platform (from 17.42
to 53.69). Policies that provide monetary incentives to consumers for
purchasing surplus food products have a dramatic impact on the
amount of food lost to the retail market.

5. Conclusions

In this paper, we study the viability of a secondary market in the
sharing economy for ugly produce, or fresh fruits and vegetables that
fail to make more usual saleable-grades. We develop a model of a two-
sided market in which consumers demand a variety of produce from a
surplus-harvest website, and suppliers seek distribution to the greatest
number of consumers possible. We estimate our empirical model using
transactional data from a sharing-economy firm that has been operating
successfully in this area for two years, Imperfect Produce, LLC.

Our results show that, controlling for prices and the attributes of the
items they are purchasing, consumer demand for deliveries through the
Imperfect Produce website rise in the variety of items they offer.
Controlling for the endogeneity of surplus produce-supplies, we show
that equilibrium margins and distribution rise in the number of items
offered on the site, which supports our hypothesis that Imperfect
Produce operates in a two-sided market. As is the case with other two-
sided markets, the platform manager is able to use indirect network
effects to his or her advantage, increasing user-demand for the website
by providing more items, and generating demand for distribution by
attracting a greater number of consumers. Counter-factual simulations
of our equilibrium pricing and network-size model show that increasing
the intensity of demand for variety, or the number of items offered on
the site, increases the demand for distribution by suppliers by an
elasticity of roughly 0.5. We interpret this result as demonstrating that
sharing-economy firms in the surplus-food market can take advantage
of substantial indirect network effects.

Finding evidence of indirect network effects in a non-conventional,
sharing-economy industry represents a substantial contribution to both
the empirical literature on how CPMS firms operate, and the practical
literature on food waste. Ours is the first study to document indirect
network effects in CPMS firms, which should be a necessary condition
for their success. While the viability of any startup firm is not guaran-
teed, if the fundamental economics of the industry suggest the presence
of indirect network effects, then success is substantially more likely.21

There is plenty of evidence of indirect network effects in technology
industries, from personal digital assistants (PDAs, Nair et al., 2004) to
yellow pages (Rysman, 2004), but we are the first to show they also
exist in the sharing economy.

In terms of the surplus food problem, our findings show that there
may indeed be a market solution to an issue that has otherwise been
regarded as largely intractable, resulting from behavioral errors by
millions of agents in the economy, each with limited ability to solve the
errors-in-planning that result in either surplus harvest, or food that
perishes before it can be used. If the conditions exist for a market to
arise in surplus food, then at least farmers will have an incentive to
manage their harvests optimally. In fact, platforms such as Food
Cowboy have emerged to provide households and restaurants a means
of selling food they would otherwise throw away, providing a first step
in making a market for food waste more generally. While the larger
waste problem is not likely to disappear, economists understand that
aligning incentives with the larger social objective – minimizing food
waste – can move us toward a longer-term solution to the problem.

Our findings have important implications for both the management
of sharing-economy platforms like Imperfect Produce, and the viability
of surplus-produce trading more generally. In any sharing-economy
platform, the manager intermediates between users who demand a
greater breadth of service and suppliers who agree to share their surplus
goods with potential users. In the case of Imperfect Produce, users of
the food surplus website are attracted by the variety of items on offer,
and suppliers are attracted by the number of consumers on the site. If
the fundamental economics of two-sided markets continues to work as
we have shown here, then greater expansion of the concept beyond
surplus harvest to leftover perishables from retail stores, household
compost and restaurant-waste are indeed possibilities.

Our research has some important limitations. Most importantly, the
Imperfect Produce data describes the operation of a startup firm, in an
industry that is struggling to become established. To the extent that
management was learning-on-the-job while our data were being gen-
erated, it likely contains more noise than would be the case if the data
were generated by a more established firm. Second, Imperfect Produce
did not record accurate, per-item data from suppliers. With more ac-
curate data on the demand-for-distribution from suppliers, we would
have been able to estimate the demand for distribution in a more direct
way. Third, and perhaps most importantly, the market for surplus
harvest is currently so small that it would be a heroic effort to attempt
to infer any aggregate welfare effects due to this platform. However,
Chen et al. (2013) show that such markets for secondary output may, in
fact, harm the interests of the firms involved. We leave this question for

Table 6
Policy simulations: subsidizing ugly produce.

η Price SD t-ratio Network SD t-ratio Volume SD t-ratio

0% 1.5710 0.2727 46.3802 7.7350 17.4204 12.2361
10% 1.6487 0.2731 5.3997 47.3121 0.1401 3.2322 21.2023 13.8297 5.4955
25% 1.7701 0.2509 14.4139 48.5055 0.4859 7.3581 27.9214 16.6419 13.6411
50% 1.9207 0.1886 28.2955 52.8411 8.0226 15.5564 39.7491 23.7332 22.4382
90% 2.1109 0.1566 46.0590 75.3317 3.5339 91.3504 53.6898 31.1292 29.0965

Note: t-ratio compares subsidy to 0% (base case). SD is the standard deviation. A single asterisk indicates significance at a 5% level.

(footnote continued)
used for its intended purpose. That is, because producers purchase scarce inputs such that
their price is equal to their marginal value product, and marginal value product depends
on the output price, degradation in saleable value represents a misuse of inputs, and
economic loss.

21 Unlike many technology platforms that emerge as monopoly, or near–monopoly,
due to the fact that they are subject to indirect network effects, and their platform is not
compatible with others (Apple iPhone, and Microsoft Windows, for example), consumers

(footnote continued)
in the surplus harvest market have the ability to multi-home (Armstrong, 2006) so the
same competitive lock-in that we see in technology markets is not likely to occur. We
define success in this market, therefore, as being able to generate sufficient long-term
profit to survive, and not to earn monopoly profits as in other industries that are also
subject to indirect network effects.
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future research. Finally, our data describe only the California market.
Whether they will generalize to the larger US, or global, markets, is
uncertain.
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Appendix A. The NegBin-P model

In this appendix, we derive the alternative count-data model to our maintained Poisson specification. This specification, the Negative-Binomial-P
(NBP) model (Greene, 2003) accounts for overdispersion typical in count-data settings, in a very general way. Given that the usual form of the
NegBin model is given as (Greene, 2003):
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where = −Q P2 . In the combined Logit-Poisson platform-demand model, we substitute the NBP specification for the Poisson stage in order to test for
the importance of overdispersion in estimating the strength of indirect network effects in the Imperfect Produce platform. We compare the two
specifications using the simple OLS-based test described in the text.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foodpol.2018.01.008.
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