

Marine Corps Recruit Depot, Parris Island Smart Grid

Energy Resilience / Security Using ESPC Contracts

CDR Andy Litteral, PE

Public Works Officer

Marine Corps Recruit Depot, Parris Island

Mission: "WE MAKE MARINES"

- First permanent settlement in 1562 by the French
- Designated a Recruit Depot: 1 Nov, 1915
- 8,095 acres: 3,262 acres are habitable
- Approximately 700 buildings
- 242 facilities 20 years or older
- Second Oldest Marine Corps Base
- Invaluable natural & historic resources

Pre-Implementation

- Existing Energy Program Very Successful
 - Energy Use 37.9% below FY2003 baseline
 - Water Use 31.2% below FY2007 baseline
 - Extensive energy conservation measures
 - Geothermal Heat Pumps, Magnetic/Frictionless Chillers, Ice Storage, Net zero Facilities, PV and Solar Thermal Systems
- Depot-wide Building Automation Systems
- Advanced HVAC controls (over 100 buildings)
- Advanced Metering (over 100 buildings)
- Utility grid SCADA switching

Pre-Implementation

- Existing Co-gen Steam Plant
 - Built 1942
 - Three Boilers (50,000 lbs/hr / 400psig / 600F)
 - One Boiler (50,000 lbs/hr, 125psig saturated)
 - Natural gas with #6 oil as backup
 - Three 1 MW steam turbines (not operational)
 - Substantial yearly O&M investment
 - Well past normal life (75 years old)

The Project Plan

Leverage Energy Savings Performance Contracting (ESPC)

- Only One (1) Hard Requirement Replace the Steam Plant
- Allow for "Bundling" of energy technologies
- Add renewables and energy security / resiliency
- Open door, unfettered audit process
- Don't guide or direct the technical solutions
- Began ESPC process in February of 2015
- Awarded 16 Dec 2016
 - Only 22 months to award
 - Largest ESPC Awarded in Marine Corps, 2nd Largest in Navy
- Ribbon Cutting 20 June 2019

Scenarios Evaluated

Option #	Description	Primary Fuel	Backup Fuel	Pros	Cons
1	Decentralization	Natural Gas	Propane Air	 Less labor-intensive maintenance without distribution system Individual building controls 	High cost for low savingsMore pieces of equipment to maintainNo redundancy
2	New Natural Gas Boilers	Natural Gas	Fuel Oil	Low install costUses existing infrastructure	 Lower energy savings Significant unknowns with re-using Building 160 Complexities during construction
3	New Boilers with Biodiesel Backup	Natural Gas	Biodiesel	Backup fuel is from a renewable source	Biodiesel fuel is more expensive Not practicable for long-term storage
4	Biomass – Thermal Only	Biomass	Natural Gas	Utilizes renewable energyLower capital cost vs. Option 5	 Design and construction complexities More costly O&M/R&R (life cycle) Training required for unfamiliar equipment
5	Biomass – Backpressure Turbine	Biomass	Natural Gas	 On-site generation from renewable energy Decreased natural gas consumption 	 Longer SPB than Option 4 Longest construction term Increased complexity from Option 4
6	Combined Heat and Power Plant	Natural Gas	Fuel Oil	 Best payback Highest capacity and reliability for electrical generation More redundancy 	Non-renewable fuel source Increased electrical interconnect complexity

Summary of Modeled Results

Option #	Description	SPB ¹	Construction Duration Estimate	Estimated Cost	Cogeneration Capacity
1	Decentralization of Existing Steam Plant	32 Years	18 Months	\$41 M	0 MW
2	Natural Gas Boilers Replacement	36 Years	18-24 Months	\$18 M	0 MW
3	NG Boilers Replacement with Biodiesel Backup	43 Years	18-24 Months	\$19.2 M	0 MW
4	Biomass Fueled Energy Plant – Thermal Only	26 Years	20-22 Months	\$25 M	0 MW
5	Biomass Fueled Energy Plant– Backpressure Turbine	27 Years	22-24 Months	\$40 M	2.75 MW
6	Combined Heat and Power Plant	16 Years	19-21 Months	\$27 M	3.5 MW

Notes:

¹Simple Payback is reflective of capital cost and energy savings. O&M costs have not been included in the simple payback calculation.

Solution Outcomes

Energy Savings Performance Contract

8 energy conservation measures

• Boiler plant; EMCS; renewable energy systems; lighting; chiller; HVAC; water; and hot water and steam distribution systems

- 40,271 metric tons annual carbon reduction
- Over 29,000 LEDs installed
- New central plant with microgrid and island mode capability

- 3.5 MW CHP Plant
- 3.6 MW Diesel Gensets
- 1.5 MW Solar PV carport
- 4 MW ground mount Solar PV
- 4 MW / 8 MWh Battery Energy Storage System (BESS)
- Microgrid Control System with Fast Load Shed

\$91 million

Project Investment

Energy Use Reduction

Onsite Energy Generation

Annual Savings

\$7 million

- Over 3.3 million square feet
- Ensures a reliable, secure energy supply
- Achieves sustainability requirements
- Reduces lifecycle operating costs of facilities

Water Use Reduction

25%

- Nearly \$1 million in annual savings
- Over 10,209 plumbing fixtures changed or retrofited
- Reduction of heat loss and evaporation at mission-critical outdoor training pool

Central Heat and Power Facility

- Centaur 40 Gas Turbine (3.5 MW)
- HRSG Boiler (60,000 pph)
 - 4ea Additional Nat Gas Burners
- 2ea 30 kpph Fire Tube Dual Fuel Boilers
- 3ea Backup Diesel Generators
 - 2.7 MW Diesel Generator
 - Demand Management & Tertiary generation
 - 2ea 455 kW diesel
 - Black Start & Backup
- 2ea 50,000 gal Diesel Fuel Tanks

Renewable Energy - Page Field

- Page Field PV 4.1 Mw Solar Array
- Four (4) 750 kVA inverters
- Two (2) 500 kVA inverters
- One (1) 1000 kVA transformer
- One (1) 1500 kVA transformer
- 15,086 335-Watt Panels
- ~19 acres
- 3.5 3.8 acres per MW
- Produces power at a capitalized cost of \$0.089 per kWh

Renewable Energy – Main Parade Parking

- Carport PV 1.65 MW Solar Array
 - Two (2) 750 kVA inverters
 - One (1) 1500 kVA transformer
 - 4, 883 ea 355-Watt solar panels
 - Covered parking structures
 - Daylight & Motion LED lighting
 - Repave and restripe parking area
 - Hurricane and earthquake resistant
 - RV & Bus Structure Height

Battery Energy Storage – BESS

- Tesla Battery Energy Storage System (BESS)
- 4 MW / 8.1 MWh Lithium Ion Battery
- 10 Inverters
- 864 individual lithium ion battery pods equal to 2,200,000 standard AA batteries
- Absorbs over 1M kWh electricity annually for later use

Success

- Building on an already successful program to move ahead aggressively
- Energy Security & Energy Resilience
- Innovative & Comprehensive Solutions
- Open ESPC audit scope maximized investment opportunities & ESCO ingenuity
- Continued Utility grid development
- "Bringing Out The Best"

Questions?

Financing Resiliency For MCRD Parris Island

February 11, 2020

INVESTING IN CLIMATE CHANGE SOLUTIONS

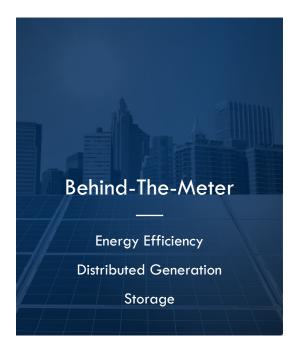
Remember the Rule of 3s:

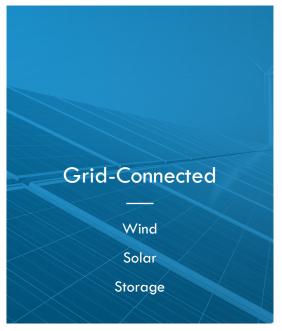
- 3 Minutes without Air
- 3 Days without Water
- 3 Weeks without Food

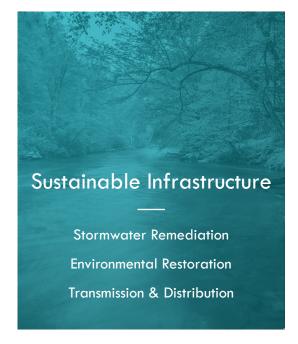
- Bear Grylls

Hannon Armstrong Profile

First U.S. public company solely dedicated to investments in climate change solutions


Principal Investor


~\$1 Billion
Invested Annually


~\$2 Billion
Balance Sheet Assets

\$5.7 Billion
Managed Assets

Markets & Asset Classes

Project Paid From Savings

- Fence-to-Fence (Whole Base) Application
 - 121 buildings (3.1 million GSF)
 - 20 energy conservation measures
- Excess savings offset fixed costs of non-savings measures
 - Energy management control system
 - Over 29,000 LEDs installed
 - Reduced water consumption by 27% through increased efficient usage
- Total Project Cost: \$91.1 million
 - Hannon Armstrong financed \$85 million.
 - Ameresco will operate the facility for 22 years.

Financing Considerations

Technology

- CHP and solar known technologies
- Battery Energy Storage System (BESS) new technology
- Contractor's previous experience with BESS technology

Contractual

- ESPC Contract Authority 42 USC 8287
- Contractor guaranty's
- Financier Rights
- Termination provisions

Credit

- US Government is Obligor
- Ameresco as ESPC Engineer/Construction Contractor

Performance

- Savings Guarantees
- Operations & Maintenance plan
- System availability requirements

Thank you

- Robert Johnson
- RJohnson@hannonarmstrong.com
- (410) 571-6182

This presentation is for informational purposes only and does not constitute an offer or solicitation to sell shares or securities, including without limitation in Hannon Armstrong or any related or associated company. Any such offer or solicitation will be made only in accordance with the terms of all applicable securities and other laws. None of the information or analyses presented are intended to form the basis for any investment decision, and no specific recommendations are intended. Accordingly, this presentation does not constitute investment advice or counsel or solicitation for investment in any security and does not constitute or form part of, and should not be construed as, any offer for sale or subscription of, or any invitation to offer to buy or subscribe for, any securities, nor should it or any part of it form the basis of, or be relied on in any connection with, any contract or commitment whatsoever. Hannon Armstrong expressly disclaims any and all responsibility for any direct or consequential loss or damage of any kind whatsoever arising directly or indirectly from: (i) reliance on any information contained in this presentation, (ii) any error, omission or inaccuracy in any such information or (iii) any action resulting therefrom.

