

Energy Systems Technology Evaluation Program (ESTEP)

Marissa Brand
Naval Information Warfare Center- Pacific
Program Management

Arthur Rubio
Naval Information Warfare Center- Pacific
H4D Lead/Trainer

Dr. Richard Carlin
Office of Naval Research
Department Head Sea Warfare & Weapons

Susan Adams
Office of Naval Research
Program Officer

ESTEP Program

- **Command Personnel**
- NPS Energy Students
- Veteran STEM Interns (CSUSM, SDSU, and others)

NIWC- Pacific

Marissa Brand Program Management Arthur Rubio H4D Trainer Info/Network Security Expertise **Technical & Business Training**

Energy ROI Research Student Project Participation Technical & Business Education

NPS

Facility Expertise Technical & Business Training

http://www.aptep.net/partners/estep/

https://www.youtube.com/watch?v=Ck-xjlC0NF8

https://veteranstoenergycareers.org/

Energy Systems Technology Evaluation Program (ESTEP)

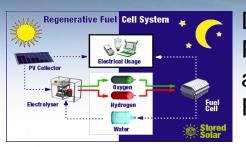
Program Description

Derisk product prototype to evaluate and transition on military bases while engaging base personnel.

Evaluate and investigate nascent energy technologies to accelerate the introduction and adoption of advanced innovative products for the Department of the Navy (DoN).

Conduct advanced technology demonstrations to evaluate emerging & innovative products using Navy and Marine Corps operations as test beds.

Engaging stakeholder and user throughout the curation process to design a successful transition plan.



Providing opportunities for professional development for veteran interns on the full range of ESTEP energy projects

All Things Microgrids!!!!!

Decentralized Microgrid With PEM Fuel Cell, H₂ Production and Storage, and PV Feasibility

Networked Building-level Micro-grid Demonstration

Design and Simulation of Micro-grids Using **Real-Time Simulation**

Modular Microgrid (M2G)

Supercapacitor Based Microgrid for Renewable **Augmented Circuits**

Cell/Electrolyzer Hydrogen

Storage

Renewable Energy Microgrid Optimization (REMO)

Evaluation of Smart Microgrid

Controllers for Distributed Energy Resources UNCLASSIFIED

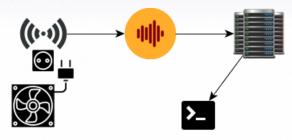
Model-based Control for Energy System Planning & Adaptive **Control Management**

CYBER

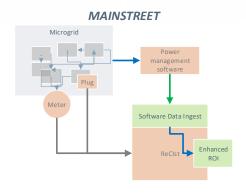
Cyber-SCADA Evaluation Capability (C-SEC) On The Move

(OTM)

Resilient Critical Infrastructure (ReClst)


ENSURE (Ensuring Reliability and

ENSURE


Efficiency)

Correlation And Visualization Between Energy, Attacks, & Risks (CAVBEAR)

Smart Plug Side Channel Analysis (SPAMSANDWICH)

Microgrid Application IntegratioN & Software Tap for the ReCIst Energy Efficiency Tool (MAINSTREET)

Labs & Boot Camps

Non-Intrusive Load Monitoring for Load Disaggregation and Power Quality Analysis -Collaboration with ASU

Joint XENDEE Training with NIWC/ASU

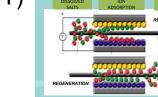
Joint Cyber/SCADA Lab Workforce Development w/ UHWO

Cyber SCADA Educational/Hands-On Training

Mobile Power Supply, Storage, & Drones

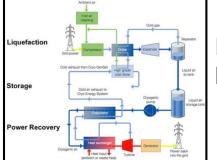
Waste to Energy
Hydrogen Generation

UAV Solar Charging Station for Facility Energy Monitoring



Next-Generation, Energy-Efficient Water Treatment

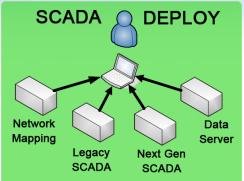
Energy & Water Recovery

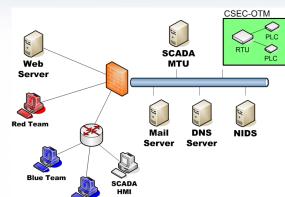

by Microbial Fuel Cells

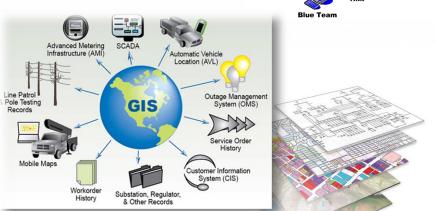
(NEWT)

Energy, Utility, and Emergency Response Solutions using Unmanned Aircraft Systems

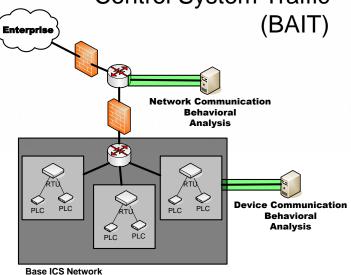
Reengineering & Integrating a Building-Scale Liquid Air Energy Storage (LAES) System




Industrial Control Systems & Supervisory Control and Data Acquisition

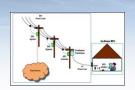


SCADA Deploy


Cyber Aware SCADA Energy Systems (CASES)

Behavioral Analysis of Industrial Control System Traffic (BAIT)

Geographic Information Systems: "Data Synchronization from GIS to ETAP"


2019/2020 New Projects

NIWC -Energy Management Circuit Breaker

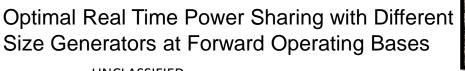
NIWC -Voltage Optimization Devices at Grid Edge

NIWC/MCH -Water Harvesting in Austere Locations & Environments (WHALE)

NIWC/MCAS Miramar -5G-enabled Next Generation Secure Energy Communications (5G NGSEC) – Leverage CRADA/ESTCP

EXWC/NIWC/MCAS Miramar -Cyber & Autonomy Resilience for Naval Installation Transportation Appliances (CARNITAS)

EXWC/NIWC -Optimizing Network Edges for Grid Resilience On Utility Network Distribution (ONE GROUND)



EXWC -AI Enhanced Water Distribution Sys. Leak Detection

NPS -Thermal Management of New Battery Systems

Installation neXt Collaboration

10

Mobility

- Autonomous Shuttle Miramar Pilot
 - CARNITA Cyber Component NIWC-PAC
 - Market Research NAVFAC/EXWC

- 5G CRADA/ESTEP NIWC-PAC
- WHALE NIWC-PAC
- SEAS

Cyber and Autonomy Resilience for Naval

Installation Transportation Appliances (CARNITA)

Lawrence Kerr, Ikerr@spawar.navy.mil, 619-553-7907

Problem Statement (Problem Curation)

 Navy forces need safe, resilient, and secure autonomous mobility platforms in order to improve safety, mitigate adverse traffic effects, and alleviate parking congestion.

Stakeholders (Beneficiaries)

- LtCol Brandon Newell, I-werX West Marine Corps Installations Command
- David Cook, NAVFAC EXWC

Proposal (Value Proposition)

 A number of potential benefits of autonomous transportation systems make these an appealing technology for moving personnel on Navy installations. These benefits come with a number of risks in cyber and adversarial AI that must be mitigated to ensure a safe, secure, and resilient transportation system.

Metrics (Mission Achievement)

- Wide coverage of penetration test
- Insight from cyber and adversarial Al to feed into ULS CONOPS

Buy-In & O&M: (Buy-In/Support)

- Jose Romero-Mariona, NIWC 71770 branch head
- LtCol Brandon Newell, I-werX West Marine Corps Installations Command
- NAVFAC Transportation Director

Objective (Deployment)

 In collaboration with the AMIS demonstration project, examine the cyber footprint and impact of unmanned transportation platforms. Our objective is to ensure the vehicle safe, secure, and resilient for deployment in a wide range of environments while highlighting potential cyber and AI limitations.

Deliverables (Key Activities)

- · Q1- Virtualized Olli autonomous vehicle for testing .
- Q2- Penetration test on virtualized and real platform.
- Q3- Initial report on adversarial AI targeted at autonomous driving system.
- · Q4- Report to accompany demonstration of findings.

Commercial Partners (Key Partners)

Local Motors

Automated Unmanned Vehicle Systems Intl.

ESTEP Veteran to Engineers Program

Team Members (Key Resources)

- · Lawrence Kerr, NIWC
- · Chris Weeden, NIWC
- · Kimberly Ferguson-Walter, NSA
- Alexander Wassel, NIWC
 - AMIS team

UNCLASSIFIED

11

Autonomous Mobility Installation Services (AMIS)

David Cook, david.j.cook@navy.mil, NAVFAC EXWC, 805-982-3477

Problem Statement (Problem Curation)

NAVFAC Transportation requires a technology that enables predictable and cost effective base mobility services.

Stakeholders (Beneficiaries)

David Bailey (NAVFAC Transportation Director)

Proposal (Value Proposition)

 Base operations could benefit greatly from reduced single occupancy vehicle travel through deployment of efficient and dynamic base mobility services. The AV technology would enable 24/7 base shuttle services, mitigate traffic, address parking constraints, and improve safety.

Metrics (Mission Achievement)

The project will monitor the cost and reliability of AV shuttle technology versus the conventional shuttle technology, considering driver resource constraints.

Buy-In & O&M: (Buy-In/Support)

NAVFAC Transportation Director has a high interest in the project, with influence on future budgetary resourcing that would pay for deploying the technology across the Navy enterprise.

Objective (Deployment)

• Conduct initial feasibility study in Year 1 consisting of the following: 1) Market Research: cost, performance, and operating requirements for the AV technology, 2) Candidate Sites Review: local site support, application description, road and facilities profile, sensitivities, permits required, 3) Feasibility Assessment: AV technology capabilities, vs. site requirements, 4) Recommendations Report: Identify a minimum of three favorable sites for a six-month deployment in Year 2.

Deliverables (Key Activities)

- Q1- Market Research Report
- Q2- Candidate Sites Review
- · Q3- Feasibility Assessment
- Q4- Recommendations Report

Commercial Partners (Key Partners)

- Local Motors
- Automated Unmanned Vehicle Systems Intl.
- ESTEP Veteran to Engineers Program

Team Members (Key Resources)

- Brendan Casey (NAVFAC Atlantic)
- Paula Saenz-Ancheta (NAVFAC SW)
- Daniel McMoore (NAVFAC Hawaii)

5G-enabled Next Generation Secure Energy Communications (5G NGSEC)

Jose Romero-Mariona & Isaí Michel Lombera, NIWCPAC, jromero@spawar.navy.mil & imichel@spawar.navy.mil, 619-553-8119 & 760-468-2828

Problem Statement (Problem Curation)

5G technology promises much more energy savings, flexibility, dynamism, scalability, and ultimately security for enabling improved communications. There is little to none work that has been done to understand its applicability to energy systems communications and ultimately DoD applications. Energy-focused commands, like MCAS Miramar, need information on the applicability of new communication technologies, like 5G, in order to better support the future of DoD installations.

Stakeholders (Beneficiaries)

- LtCol Brandon Newell, MCAS Miramar Director Installations-werX West
- Mick Wasco, MCAS Miramar energy SME
- Marine Corps Base Hawaii

Proposal (Value Proposition)

Current lack of information, and more importantly, demonstrated installations of 5G technologies on DoD facilities, are a major hindrance to determining the usability and applicability of next-generation communication capabilities. The proposed study will develop a 5G-focused mobile network design experience for DoD personnel with academia and industry organizations.

Metrics (Mission Achievement)

- Range of coverage/number of transmitters per area, power requirements, network layout
- Interference with other equipment / operational signals
- Security level of 5G protocols, 4G and 5G integration and delineation of services

Buy-In & O&M: (Buy-In/Support)

- LtCol Brandon Newell, MCAS Miramar Director Installations-werX West
- Mick Wasco, MCAS Miramar energy SME
- Tarek Abdallah, US Army Corps of Engineers

Objective (Deployment)

DoD personnel will partner with MCAS Miramar's eWOC laboratory, as well as Verizon's 5G team, to demonstrate a limited installation and demonstration of 5G technologies and their enabling capabilities for providing next generation efficient and secure communications.

Deliverables (Key Activities)

- FY20 Q1 FY21 Q1: Cyber defense evaluation
- FY21 Q2 FY22 Q1: Protocol 4G/5G networks
- FY22 Q2 FY22 Q4: Integration with services

Commercial Partners (Key Partners)

- Laurie Mulligan, Verizon 5G team
- Qualcomm Cyber Security Solutions

Team Members (Key Resources)

- · Jose Romero-Mariona, PhD
- Isaí Michel Lombera, PhD
- ESTEP BS/MS Interns

Water Harvesting in Austere Locations and Environments (WHALE)

Lewis Hsu, NIWC-Pac, lewis.hus@navy.mil

Problem Statement (Problem Curation)

 Units and facilities need clean, potable water during operations and in remote locations in order to sustain health and safety of personnel

Stakeholders (Beneficiaries)

- Amy Bevan, MCBH
- LtCol Brandon Newell, I-weX West, MCICOM

Proposal (Value Proposition)

 In direct support to Installation neXt Ecosystem Marine Corps Resilience pathway.

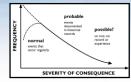
Objective (Deployment)

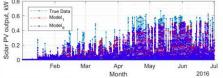
In austere and remote locations, delivery of water for hygiene and health is an intensive logistical process consuming manpower and fuel. Alternatively, local geography may allow for filtration but still requires an electrical power source, usually in the form of a generator. This proposal is intended to provide generation of clean water at the point of use without the need for utilities in a rugged or austere environment. The system takes advantage of recent advances in materials science for water harvesting of ambient water vapor in the air.

Commercial Partners (Key Partners)

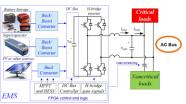
Zero Mass Water

Team Members (Key Resources)


- Amy Bevan, MCBH
- Lance Lee, MCBH


NPS- Energy ROI Research, Student Project Participation & Technical/Business Education

- Resilience Assessment for Emerging Energy Technologies
- Solid State Transformer (SST)

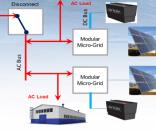


- Renewable Energy Microgrid Optimization (REMO) Study of Phase Change Materials for Passively Cooling Building Spaces
- Study of Phase Change Materials for Passively Cooling Building Spaces

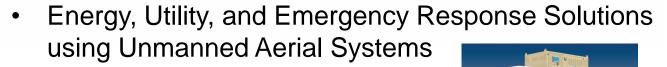
- Integration of CAES and Supercapacitor Microgrid
- Waste Heat Recovery from Gas Turbine Exhaust
- Self Contained Hydrogen to Electrical System
- ESTEP Cost-Benefit Analysis
- Energy Management System for Department of Navy Microgrids
- Re-engineering & Integrating a Building Scale Liquid Air Energy Storage System

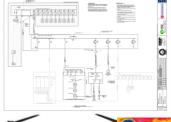
15

NAVFAC/EXWC Facility Expertise, Technical Business & Training



Networked Building Level Micro-grid Demonstration

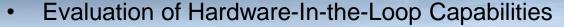

- Waste to Hydrogen
- Nanolubricant HVAC Refrigerant

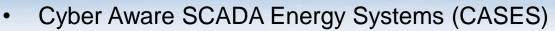


- Re-locatable Microgrid with Storage
- Design and Simulation of Microgrids Using Real-Time Simulation

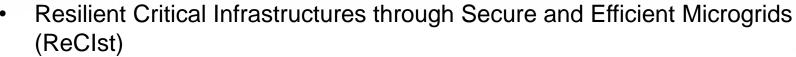
Modular Microgrid (M2G)

- Multi-Agent Systems for Power Control & Optimization (MAS)
- CA Energy Commission (CEC) Adaptive Microgrid Partnership





NIWC Pacific- Cyber SCADA/Industrial Controls, Labs, Microgrids, Mobile Power Supply/Storage, Boot Camps FY19- 18 Projects/10 New Proposals/2 CRADAs


Deployable SCADA Architecture for Non-Intrusive Energy System Evaluation (SCADA Deploy)

Next-Generation, Energy-Efficient Water Treatment (NEWT)

Botnet Malware Detection and Classification in Smart Buildings and Cyber-Physical Systems using Nonparametric Bayesian Methods(Smart Building Botnets)

Cyber SCADA Educational/Hands-On Training

Non-Intrusive Load Monitoring for Load Disaggregation & Power Quality **Analysis**

- Wireless IoT Long Range Cyber Evaluation (WiLoRaCE)
- Decepti-SCADA: Cyber Deception for Securing SCADA Energy Systems
- Energy & Water Recovery by Microbial Fuel Cells
- Micro-grid Adversary Design and Mentality MADMen

