

Separating Mixtures

Name:			
Teacher:			
Class:			

Physical Science Unit 1

Exit Tickets

Lesson 1 Exit Ticket: Dirty Water

1.	claim simply and clearly.

Lesson 2 Exit Ticket: The Global State of Water

	1.	your response. [3]
-		

Lesson 3 Exit Ticket: Removing Solid Particles

Sahara has a mixture of 1,000 large and small paper clips. She has these following items in her kitchen:

2. Circle the tool above that best separates the paper clips by size.

Lesson 4 Exit Ticket: Removing Dissolved Particles

Directions: The picture shows an experimental setup to separate a salt, sand, and water mixture by filtration.

- 1. Salt and sand are approximately the same size. Will the experimental setup shown above separate the solutes (sand and salt) from the solvent (water)? Put an X on the statement you agree with most. [1]
 - ☐ Filtration will separate both salt and sand from the water.
 - Filtration is not enough to separate both sand and salt from the water.
- 2. Why or why not? Explain your choice. In your explanation, address both the sand and the salt. [2]

3. Identify the components in the filtrate that would be present after pouring the mixture through the filter. [1]

Lesson 5 Exit Ticket: Removing Other Liquids

Directions: The cup pictured below contains a mixture of the following three immiscible liquids: honey, dyed green water, and blue dish soap. Table 1 lists the physical properties of those substances.

Table 1

Substance	Mass (g)	Color	State of Matter	Density (g/ml)
Honey	11.36	Gold	Liquid	1.42
Dyed Water	30.00	Green	Liquid	1.00
Dish Soap	28.40	Blue	Liquid	1.06

1. Which layer would you expect to find each substance in the cup? [1]

Layer	Substance
Тор	
Middle	
Bottom	

- 2. If the liquids were not immiscible, could you use decantation to separate this mixture? Circle the most correct explanation. [2]
 - A. You could not use decantation to separate this mixture. If the liquids were not immiscible, each liquid would have an identical density.
 - B. You could use decantation since the liquids would still retain their individual densities.
 - C. You could not use decantation to separate this mixture. If the liquids were not immiscible, they would all mix together.

Lesson 6 Exit Ticket: Physical Properties

	1.	José has a mixture of marshmallows, sugar, and water. The sugar has dissolved into the water. List two materials José would need to separate his mixture. [2]
1.		
2.		
	2.	Explain why he would need both of these materials. [2]
	3.	Identify two substances that you think could be separated through decantation. Explain your reasoning. [2]

Lesson 7 Exit Ticket: Solubility

Directions: The following table lists the physical properties of the following substances. Use the following information, Table 1, and your knowledge of science to answer the question below.

Table 1: Physical Properties of Substances in Water

Substances	Polar or Nonpolar?	Soluble in water?
Ethanol	Polar	
Vegetable oil	Nonpolar	
Salt		Yes
Sugar	Polar	

1. Which compounds are polar, nonpolar, and soluble/not soluble in water? Fill in the blanks in Table 1. [3]

Lesson 8 Exit Ticket: Changing Solubility

Kyra is experimenting with hot chocolate mix at home. She places the mix into a cup of water.

1.	response. [3]

Lesson 9 Exit Ticket: Graphing Solubility

Scholars were studying the solubility of four substances using the graph shown. Use the image below to answer questions 1–3.

Image Credit: Brightyellowjeans, CC BY-SA 4.0, via Wikimedia Commons

- 1. At which temperature was approximately 20 g of Substance C and Substance D dissolved? [1]
 - A. 10°C
 - B. 27°C
 - C. 33°C
 - D. 42°C

Rafael is trying to dissolve 100 g of Substance A in Beaker 1 and 100 g of Substance B in Beaker 2 at room temperature (23°C) but only some of each compound dissolves.

- 2. Which compound would benefit the most with an increase in temperature? [1]
 - Substance A
 - Substance B
- 3. How do you know? Explain why. [1]

Lesson 11 Exit Ticket: Fiz, Fiz, Pop!

Directions: Use the graph below to answer the question that follows.

Temperature (°C)Image Credit: "Solubility of CO₂ in water," <u>The Engineering Toolbox (multiple authors)</u>, public domain, via Wikimedia Commons

- 1. When making your own soda, circle the best strategy to maximize the number of bubbles in your soda without adding more CO₂. [2]
 - A. Agitate the solution.
 - B. Increase the temperature of the solution.
 - C. Decrease the temperature of the solution.
 - D. Increase the amount of CO₂ in the solution.
 - E. Decrease the amount of CO₂ in the solution.

Lesson 12, Day One, Exit Ticket: The Dirty Water Design Challenge: Introduction and Planning

1.	Identify two ingredients in the dirty water mixture and explain how your group plans to remove them. Justify your response. [2]

Lesson 13, Day One, Exit Ticket: The Dirty Water Design Challenge: Implementation and Reflection

1.	Explain one revision you want to make to your group's design when you have the opportunity tomorrow. Justify your response. [3]

Lesson 13, Day Two, Exit Ticket: The Dirty Water Design Challenge: Implementation and Reflection

1. List the method the household items can be separated by on the line below its picture: distillation, decantation, and/or filtration. [4]

