

It started with a conversation...

- Do you have problems on your installation for which you don't have a solution?
 - Yes... Of course!
- Do you have problems that you have a concept for a solution but don't know how to execute it?
 - Yes...Often!!
- Do you want to work with talented students and professors to solve these issues?
 - YES PLEASE!!!

And we were off and running...

Mission

We build networks of innovators to generate new solutions to national security problems.

- The Department of Defense's (DoD) current model for problem-solving is expensive and inefficient.
- The complexity of problems the DoD faces and the speed at which solutions are required means new problem solvers are critical.
- Adding intellectual diversity from nontraditional solution providers (e.g. the academic and early-stage venture communities) is necessary to solve problems more economically, faster, and better.
- A networked approach enables the consistent problem-solving capability for the DoD that helps bridge the civil-military divide and improves outcomes for service members.

Who

- DoD program office reporting to the Under Secretary of Defense for Research & Engineering
- Program of Record FY20
- NSIN pays for all programming

What

> Partners with universities and the venture community to bring innovative tools and solutions to warfighters

Where

- HQ in Arlington, VA
- 33 regional positions across 20 states
- 21 embedded personnel at universities

NSIN by the Numbers

NSIN Funding FY 2019-2021:

million dollars

NSIN has helped

909

DoD organizations solve

963

problemsby generating

1366 unique solutions. **Engaged**

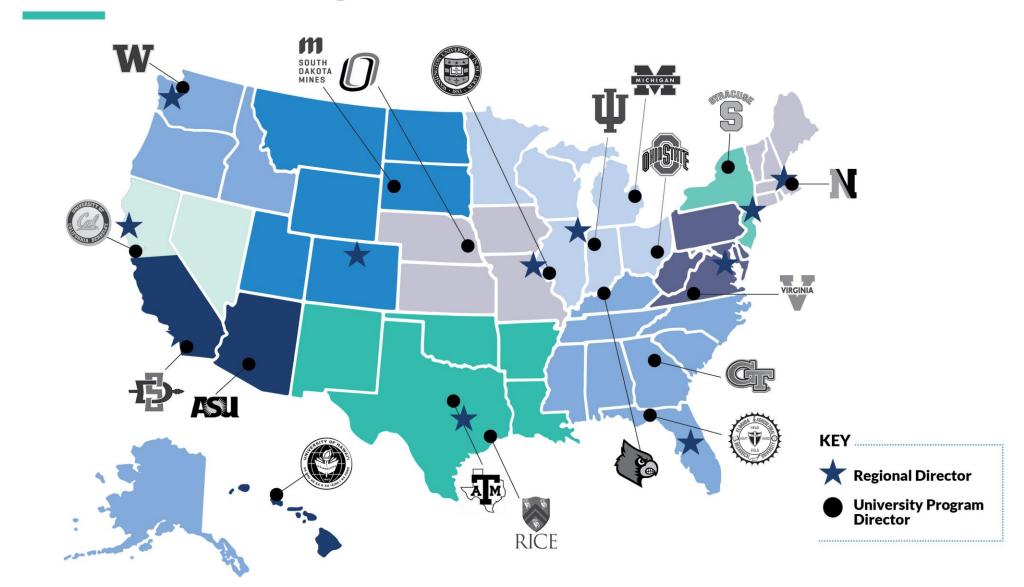
6,925

new people in the National Security Innovation Base.

Supported

new companies to enter the National Security Innovation Base and spun out 33 of DoD-funded technologies. Companies in NSIN programs have **raised**

\$649


million in private funding and

\$295

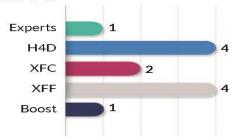
million in DoD funding.

NSIN University Partners

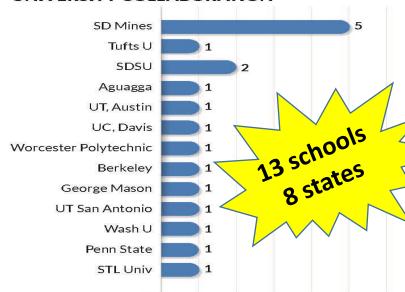
Solution Evolution

Basic expectation; Initial solution

Capstone, X-Force Fellowship, SBIR


Capstone, X-Force Fellowship, SBIR

Final solution and production – LLC, Phase 3


2021 – Completed Projects
NATIONAL SECURITY
INNOVATION NETWORK

ELLSWORTH AFB USE OF NSIN PROGRAMS TO SOLVE PROBLEMS

NSIN PROGRAMS

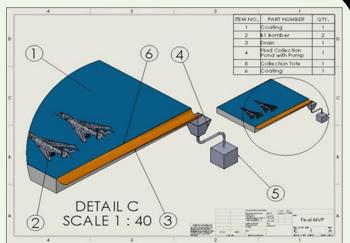
UNIVERSITY COLLABORATION

	NSIN PROGRAM	UNIT	PARTNER	PROBLEM
	H4D	28 CES	South Dakota Mines	Concrete Spalling
	H4D	28 MXG	South Dakota Mines	Training Analysis
	X-Force Capstone	28 CES	San Diego State University	Counter Drone
	X-Force Capstone	28 SFS	San Diego State University	Wind Proof Trash Cans
	H4D	28 SFS	University of Texas, Austin	RoadCon
	H4D	28 FSS	University of California, Davis	Resource Connections w/Spouses
	Boost (SBIR)	28 CES	Aguagga (Tacoma)	PFAS Onsite Destruction
	X-Force Fellowship	28 MXG	Berkeley	Data Analysis & Dashboards
		_	George Mason University	Data Analysis & Dashboards
		, -	University of Texas, San Antonio	Data Analysis & Dashboards
	X-Force Fellowship	28 MXS	South Dakota Mines	3D Printing of B-1 Parts
		-	Washington University St. Louis	3D Printing of B-1 Parts
_		_	Washington University St. Louis	3D Printing of B-1 Parts
_	X-Force Fellowship	28 MSG	South Dakota Mines	Energy Resilience Trade-off Matrices
			South Dakota Mines	Energy Resilience Trade-off Matrices
		_	Penn State	Energy Resilience Trade-off Matrices
	X-Force Fellowship	28 CS	South Dakota Mines	Network Wire Tracing
			St. Louis University	Network Wire Tracing
			Washington University St. Louis	Network Wire Tracing
	Experts	28 MSG	Worcester Polytechnic Institute	Energy Resilience
		_	Tufts University	Energy Resilience

H₄D

Taming the Dragons Breath

Completed Dec 2020


Problem: Heat and chemicals degree

concrete at twice the normal rate

Solution: Recommended chemical

concrete coating and a fluid collection

method

Phase 1 SBIR

Member
of team
formed
LLC; Phase
1 SBIR

H₄D

Filling in the Blanks: MXG Training

Completed Dec 2020

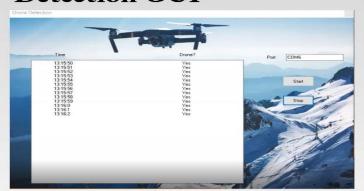
Problem: There is no easy means of gathering all maintainer training on one dashboard to make decisions on requirements Solution: Started working with Excel tools to synthesize data

Project Overview

Ellsworth Air Force Base in South Dakota outsourced a project for Drone Force One to design and manufacture. The product will detect and identify multi-rotor UAVs that enter a specified area. To achieve this we employed our knowledge and research to develop a unit which will detect and identify a nearby UAV and alert a computer interface of its presence.

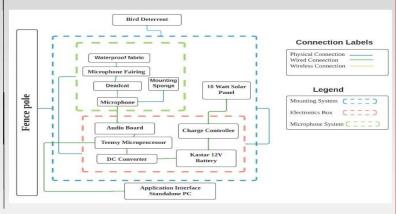
Manufacturing Approach

- Sheet Metal Construction
- Water-Jet & Welding
- Powder Coat Finish


Prototype Development

- Microphone Fairing
- Drone Detection Software

Detection GUI


Project Requirements/Specs

- Withstand South Dakota Weather
- Tamper Resistance
- Identify Presence of a Multi-Rotor Drone

Main Components

- 10 Watt Solar Panel
- Teensy 3.6 with Audio Shield
- IP67 Electronics Box
- 3D Printed Microphone Fairing

System Level Diagram

Completed May 21 Prototype in use by SFS for training

Luke

Drone Force One Team Members

Isaiah Pico

Spring 202

Automatic Trash Lock (GUST)

By All Weather Trash Team

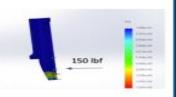
Sponsored By USAF and NSIN

Department of Mechanical Engineering

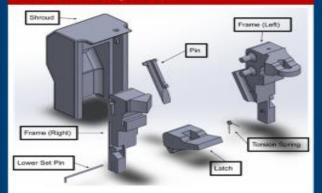
Project Overview

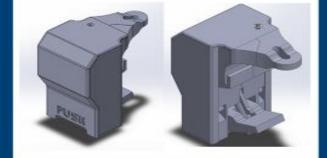
Problem Statement:

High wind conditions at Ellsworth AFB have led to tipped residential trash cans causing an unsightly mess of spilled trash, costly cleanup, and risk to aircraft


Need:

The trash can lid must stay closed whenever tipped over, must auto-lock when users interact to dispose of trash, and lastly must open when inverted by the local refuse company's trash collection truck.


Engineering Analysis


Factor	of Safety Analysis	on all Parts with A	SA& Ultern 1010	Resin
os @ c	Shroud	Pin	Outer Tab	Latch
ASA	18	1.01	6.2	1.1
Ultern 1010	44	1.2	14	2.4

 Stress analysis was performed using Solidworks simulation to determine if the pin could achieve a reliable factor of safety at a max force of 150 lbf.

CAD Models - Exploded View

Final Product

- GUST is made using ASA for its UV resistance and high tensile strength.
- The gravity-driven internal components keep the trash can closed when knocked over and open the trash can when inverted by the trash truck.

Prototype Iterations

Testing Methods

· Manual Tip Test

 Refuse truck pickup test

 Load stress on latch and pin

Freezing weather condition affects

Team Members

Hector Cea (Team Lead) Analyst/Research

Jacob Hoppe CAD Specialist/ Design Lead

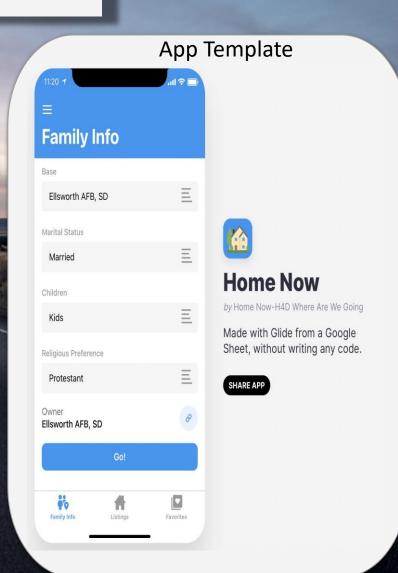
David Arushanyan Research/Supply Manager Completed May 21.
Team & SDSU have patent pending.
EAFB beginning production

EXPERTS BETA "ENERGY"

Discussion of Energy Solutions with Academia: Generation, Transmission, Storage, Efficiency, and Resilience Completed Jun 21

Follow-on Summer Fellowship created research portfolio and decision matrices

Where Are We Going Now?

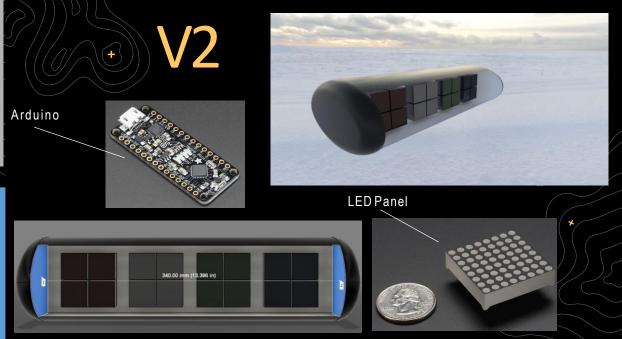

H4D Completed Jun 21

<u> Initial Findings:</u>

- Interviewed 200+ individuals
- A 30 min commute from base was the max considered by all.
- Schools were top priority followed by crime/safety, all based on the house location.
- There is a need for an App to manage data and needs

Next Steps:

- Student LLC continuing work and partnered with Dyess
- New App name is PCS PAL


ROADCON

H₄D

Completed May 21
Planning a follow-on project to
continue the work

X-FORCE 2021 SUMMER FELLOWSHIPS

MXG Data Analysis and Dashboards for Training

Follow on to Dec 20 H4D project. Final solution created and in use!

Berkeley X-Force Fellows Team Up with Military Sponsors to Solve Real-World Problems

The X-Force Fellowship gives undergraduate and graduate students the opportunity to tackle real-world national security issues in DoD agencies (Photo courtesy of NSIN)

Energy Decision Matrices Follow-on to Experts Beta project. Provided wealth of research and tool for decision-making.

STORAGE

Fixed O/M Cost	Capitol Cost	Round-Trip	Cvcle Life #	Cycle Life yrs**	Carbon Footprint			s
[USD/kW-yr]	[USD/kWh]	Efficiency	,	, ,	[kgCO2eq MWh-1]	Feasibility	Density Wh/L	
9.31	\$415	86%	2000	5.77	11	10	350	2
9.57	\$425	86%	1200	6.08	11	10	460	2
10	\$900	87%	5,000		176	6	250	4
11.97	\$426	70%	5,201		53	2	75	1
12.72	\$378	85%	599	2.13	149	10	85	1
	N/A	92%	37000		140.33	2	312.5	3
N/A		93%	NA	NA	27	5	290	3
						8		
28.51	\$312	35%	10403	20	47	9	1750	5
5.6	\$200	90%	10000	20	438	10	50	2
30.4	\$262	80%	13870	40	273	1	1.1	9
16.12	\$119	52%	10403	30	27	8	4	2
	[USD/kW-yr] 9.31 9.57 10 11.97 12.72 N/A 28.51 5.6 30.4	[USD/kW-yr] [USD/kWh] 9.31 \$415 9.57 \$425 10 \$900 11.97 \$426 12.72 \$378 N/A N/A N/A 28.51 \$312 5.6 \$200 30.4 \$262	[USD/kW-yr] [USD/kWh] Efficiency 9.31 \$415 86% 9.57 \$425 86% 10 \$900 87% 11.97 \$426 70% 12.72 \$378 85% N/A 92% N/A 93% 28.51 \$312 35% 5.6 \$200 90% 30.4 \$262 80%	[USD/kW-yr] [USD/kWh] Efficiency Cycle Life # 9.31 \$415 86% 2000 9.57 \$425 86% 1200 10 \$900 87% 5,000 11.97 \$426 70% 5,201 12.72 \$378 85% 599 N/A 92% 37000 N/A 93% NA 28.51 \$312 35% 10403 5.6 \$200 90% 10000 30.4 \$262 80% 13870	[USD/kW-yr] [USD/kWh] Efficiency Cycle Lite # Cycle Lite yrs** 9.31 \$415 86% 2000 5.77 9.57 \$425 86% 1200 6.08 10 \$900 87% 5,000 11.97 \$426 70% 5,201 12.72 \$378 85% 599 2.13 N/A 92% 37000 N/A 93% NA NA 28.51 \$312 35% 10403 20 5.6 \$200 90% 10000 20 30.4 \$262 80% 13870 40	[USD/kW-yr] [USD/kWh] Efficiency Cycle Lite Cycle Lite ys** [kgCO2eq MWh-1] 9.31 \$415 86% 2000 5.77 11 9.57 \$425 86% 1200 6.08 11 10 \$900 87% 5,000 176 11.97 \$426 70% 5,201 53 12.72 \$378 85% 599 2.13 149 N/A 92% 37000 140.33 NA N/A 93% NA NA 27 28.51 \$312 35% 10403 20 47 5.6 \$200 90% 10000 20 438 30.4 \$262 80% 13870 40 273	[USD/k:W-yr] [USD/k:Wh] Efficiency Cycle Life # Cycle Life # EgCO2eq MWh-1] Feasibility 9.31 \$415 86% 2000 5.77 11 10 9.57 \$425 86% 1200 6.08 11 10 10 \$900 87% 5,000 176 6 11.97 \$426 70% 5,201 53 2 12.72 \$378 85% 599 2.13 149 10 N/A 92% 37000 140.33 2 N/A 93% NA NA 27 5 28.51 \$312 35% 10403 20 47 9 5.6 \$200 90% 10000 20 438 10 30.4 \$262 80% 13870 40 273 1	[USD/kWh] Efficiency Cycle Life # Cycle Life yrs** [kgCO2eq MWh-1] Feasibility Density Wh L 9.31 \$415 86% 2000 5.77 11 10 350 9.57 \$425 86% 1200 6.08 11 10 460 10 \$900 87% 5,000 176 6 250 11.97 \$426 70% 5,201 53 2 75 12.72 \$378 85% 599 2.13 149 10 85 N/A 92% 37000 140.33 2 312.5 N/A 93% NA NA 27 5 290 28.51 \$312 35% 10403 20 47 9 1750 5.6 \$200 90% 10000 20 438 10 50 30.4 \$262 80% 13870 40 273 1 1.1

* All numbers based on storage systems rated to output in the range of 10MW for 10 hours (100MWh)

** Geothermal Data was difficult to find in usable forms

Scaled (out of 10) (worst to best)	Cost /kWh	Round-Trip Efficiency	Energy Density Wh/L	Cycle Life	Carbon Footprint [kgCO2eq·MWh-1]	Technical Feasibility	TOTAL
Weight	1	1	1	1	1	1	
Lithium ion LFP	5.85	8.6	7	1.4	9.7	10	42.6
Lithium ion NCM	5.75	8.6	10	0.9	9.7	10	45.0
Sodium Sulfur	1.00	8.7	5.4	3.6	6.0	6	30.7
Redox Flow	5.74	7	1.6	3.7	8.8	2	28.9
Lead Acid	6.22	8.5	1.8	0.4	6.6	10	33.6
Sodium Ion*		9.2	6.8	10.0	6.8	2	34.8
Non-Batteries							
Molten-Salt Thermal		9.3	6.3		9.4	5	30.0
Hydrogen Fuel Cells**	6.88	3.5	10	7.5	8.9	9	45.8
Flywheels	8.00	9	1.1	7.2	0.0	10	35.3
Pumped Hydro	7.38	8	0	10.0	3.8	1	30.1
Compressed Air	8.81	5.2	0.1	7.5	9.4	8	39.0
= Data Filter	All						

A BETTER WAY

Email not displaying correctly? View in browser.

Trouble accessing links? https://www.nsin.us/resources/.

Monday, Aug. 16, 2021 Reading time: 2 minutes

FEATURE

Record-Breaking X-Force Fellowship Concludes

Boasting a record-breaking cohort of 282 students, the NSIN X-Force Fellows presented their final projects to Department of Defense (DoD) problem sponsors last week. During the 10-week-long program, Fellows developed solutions ranging from military policy improvements to mechanical engineering. Read more about what the Fellows accomplished this summer.

Learn more >>

DISA

Fix My Broken Bones

Reverse engineered designs; proved increased durability.

Researched best software options for modeling.
Multiple solutions in use.

It Hurts When IP
Developed Cable
Management plan and
3-D printed bundling
device.
Solution in place.

Rack Cable Bundler

Fall '21 Innovating for National **Security & Capstone Projects**

Develop means to alert snow equipment operators of obstructions under the snow to reduce damage to plow blades and vehicles.

reduce damage to plow blades and vehicles.

Child Care Finder

Create a user-friendly platform that creates a one-stop place for parents seeking any kind of child care.

Improve efficiencies of snow removal and real time status

Deicing Fluid Remix

Analyze and recommend mitigation options for deicer fluids used on aircraft

Develop a method of catching fluids before they fall from the aircraft wings to the hangar floor causing slipping hazards.

Oh My Aching Back

Create a device that is safe around the aircraft to lift heavy boxes raised overhead during maintenance.

Lard of the Fliers

Develop data analytics and collation methods for airfield status data.

If It's In Stock, We Got It!

Assess retail inventory process; develop efficiencies to create time savings and better control cost of sales and variances.

Learning Curve

Create means of collecting diverse unit training data from multiple platforms and allowing easy assessment of

Show Me the Money

currency/gaps.
Data management and decision-making
tool for tracking and approving unfunded
requirements

NSIN's newest pilot program. Recruits start-ups from low income states to solve DoD problems.

Businesses move through a 3-month incubator program.

Ellsworth's problem set for the cohort is Resilient Energy. Starts in Nov.

NSIN Design Thinking Bootcamp: Free class taught by University of California-Berkley. Virtual 4 weeks in 3 hour blocks M-W-TH. Up to 40 students. Planning on hosting in Jan 22.

Benefits to the Installation & Community Installation Perspective

- Fresh approaches to solve short and long term problems
- · Re-energized base personnel; shadow program to promote innovation
- Provides foundation for SBIR/STTR or commercialization opportunities
- Positive interaction between military members and student teams; synergy of ideas
- Exposure to military life and potential for recruitment
- Community perspective
 - · Strengthened ties to installation, academic institutions, and entrepreneurs
 - Unique experience for students
 - Potential to create start-ups and build defense economy

Questions??

Contact Info: Lorie Vega

loretta.vega@us.af.mil