
How to write a better SQL script

SQL Script Best Practices

16.Feb.2022

© 2022 Copyright Genpact. All Rights Reserved.

By: Shailendra Srivastava

22 © 2022 Copyright Genpact. All Rights Reserved.

Contents

Some useful SQL functions

Format the SQL script to improve readability

Drawbacks of using NOT IN as a subquery

Use of the Common Table Expression (CTE)

Use temporal tables

Use of Try… Catch and Error Handling

Use of transactions6

7

8

4 Some useful SQL functions

1

2

3

5

9

Use of JSON in stored procedures

Getting accurate execution time In SQL Server

Useful SQL functions

33

Format the SQL script to improve readability (1/4)

© 2022 Copyright Genpact. All Rights Reserved.

Avoid “*”

Avoid Prefer

select * from customers SELECT name, age, salary
FROM customers

Always avoid the use of “*” in a select statement. Instead, always give a specific column name.

44

Format the SQL script to improve readability (2/4)

© 2022 Copyright Genpact. All Rights Reserved.

Use of uppercase and lowercase

Avoid Prefer

select id, name from customers SELECT id, name FROM customers

SQL keywords should be in “uppercase”, and table and column name should be in “lowercase”

SQL function should come as GET_DATE(), MIN(), MAX() etc.

55

Format the SQL script to improve readability (3/4)

© 2022 Copyright Genpact. All Rights Reserved.

Format your query: use indentation and add white spaces

Avoid Prefer

SELECT customers.id, customers.name, customers.age,
customers.gender, customers.salary, first_purchase.date
FROM company.customers
LEFT JOIN (SELECT customer_id, MIN(date) as date FROM
company.purchases GROUP BY customer_id) AS
first_purchase
ON first_purchase.customer_id = customers.id
WHERE customers.age<=30

SELECT customers.id,
customers.name,
customers.age,
customers.gender,
customers.salary,
first_purchase.date

FROM company.customers
LEFT JOIN (

SELECT customer_id,
MIN(date) as date

FROM company.purchases
GROUP BY customer_id

) AS first_purchase
ON first_purchase.customer_id = customers.id

WHERE customers.age <= 30

Indent after a keyword, and when you use a subquery or a derived table, add white spaces in the WHERE clause

66

Format the SQL script to improve readability (4/4)

© 2022 Copyright Genpact. All Rights Reserved.

Use aliases when it improves readability

Avoid Prefer

SELECT customers.id,
customers.name,
customers.context_col1,
nested.f0_

FROM company.customers
JOIN (

SELECT customer_id,
MIN(date)

FROM company.purchases
GROUP BY customer_id

) ON customer_id = customers.id

SELECT customers.id,
customers.name,
customers.context_col1 as ip_address,
first_purchase.date as first_purchase_date

FROM company.customers
JOIN (

SELECT customer_id,
MIN(date) as date

FROM company.purchases
GROUP BY customer_id

) AS first_purchase
ON first_purchase.customer_id = customers.id

Meaningful alias for columns should be used with lowercase 'as', and for tables, with an uppercase 'AS'

77

Drawbacks of using NOT IN as a subquery (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

It’s common to use the operator NOT IN to retrieve rows in a table (or SQL statement) that are not in another

table or another SQL statement.

As in regular query When we may have Null

SELECT ID FROM T1
WHERE ID NOT IN (SELECT ID FROM T2)

INSERT INTO T2 VALUES (NULL)

SELECT ID FROM T1
WHERE ID NOT IN (SELECT ID FROM T2)

❖ NOT IN doesn’t always return the expected results when null values are allowed

❖ NOT IN works, but as the number of records grows, NOT IN performs badly

88

Drawbacks of using NOT IN as a subquery (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

Optional operators to avoid the use of the NOT IN

NOT EXISTS SELECT ID FROM T1
WHERE NOT EXISTS
(SELECT ID FROM T2 WHERE T1.ID = T2.ID)

LEFT OUTER JOIN SELECT T1.ID FROM T1
LEFT OUTER JOIN T2 ON T1.ID = T2.ID
WHERE T2.ID IS NULL

EXCEPT SELECT ID FROM T1
EXCEPT
SELECT ID FROM T2

99

Use of the Common Table Expression (CTE) (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

A CTE allows you to define and execute a query, of which the result exists temporarily and can be used within a

larger query.

CTEs are available on most modern databases. It works like a derived table, with two advantages:

❖ Using CTE improves the readability of your query

❖ A CTE is defined once then can be referred to multiple times

You declare a CTE with the instruction WITH … AS:

1010

Use of the Common Table Expression (CTE) (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

;with Create3Entries
AS
(

SELECT fldId,StateName,CaseRequestType,CaseRequestSubType,'Mail' DeliveryMethod FROM
UACT0b621a7da462415385a821a9caded4e7

WHERE DeliveryMethod='Any'
UNION
SELECT fldId,StateName,CaseRequestType,CaseRequestSubType,'Email' DeliveryMethod FROM

UACT0b621a7da462415385a821a9caded4e7
WHERE DeliveryMethod='Any'

Union
SELECT fldId,StateName,CaseRequestType,CaseRequestSubType,'Fax' DeliveryMethod FROM

UACT0b621a7da462415385a821a9caded4e7
WHERE DeliveryMethod='Any'

),
Merge3Entries AS
(

SELECT Mtbl.fldIWfId,Mtbl.fldIActId,Mtbl.fldAIId,Mtbl.fldMasterIWfId,Mtbl.CaseRequestType
,Create3Entries.DeliveryMethod,Mtbl.CaseRequestSubType

FROM Create3Entries
INNER JOIN UACT0b621a7da462415385a821a9caded4e7 Mtbl ON Mtbl.fldId=Create3Entries.fldId

)
INSERT INTO UACT0b621a7da462415385a821a9caded4e7
(fldIWfId,fldIActId,fldAIId,fldMasterIWfId,CaseRequestType,DeliveryMethod,CaseRequestSubType)
SELECT fldIWfId,fldIActId,fldAIId,fldMasterIWfId,CaseRequestType,DeliveryMethod,CaseRequestSubType
FROM Merge3Entries

1111

Use temporal tables (1/4)

© 2022 Copyright Genpact. All Rights Reserved.

To maintain version/history of records of a table

❖ Audit

❖ Slowly changing dimensions

❖ Repair record-level corruptions

Prerequisites must be met Limitation

• A primary key must be defined
• Two columns must be defined to record the start

and end date with a data type of datetime2

• Temporal and history table cannot be FILETABLE
• The history table cannot have any constraints
• INSERT and UPDATE statements cannot reference

the SYSTEM_TIME period columns
• Data in the history table cannot be modified

1212

Use temporal tables (2/4)

© 2022 Copyright Genpact. All Rights Reserved.

Query to create a temporal table

CREATE TABLE People(
PeopleID int PRIMARY KEY NOT NULL, Name varchar(50) Null,
LastName varchar(100) NULL,
NickName varchar(25) NULL,
StartTime datetime2 (0) GENERATED ALWAYS AS ROW START NOT NULL
DEFAULT GETUTCDATE(),
EndTime datetime2(0) GENERATED ALWAYS AS ROW END NOT NULL
DEFAULT CONVERT(DATETIME2, '9999-12-31 23:59:59.9999999'),
PERIOD FOR SYSTEM_TIME (StartTime,EndTime))
WITH (SYSTEM_VERSIONING = ON(HISTORY_TABLE = dbo.PeopleHistory))

1313

Use temporal tables (3/4)

© 2022 Copyright Genpact. All Rights Reserved.

Apply changes to records

INSERT INTO dbo.People VALUES(2,'James','Smith', 'Jam',DEFAULT, DEFAULT)
WAITFOR DELAY '00:01:00'
UPDATE dbo.People
SET dbo.People.Name = 'Thomas' WHERE dbo.People.PeopleID=2
WAITFOR DELAY '00:02:00'
INSERT INTO dbo.People VALUES(3,'Joan','Johnson','Jon',DEFAULT, DEFAULT)
WAITFOR DELAY '00:01:00'
UPDATE dbo.People
SET dbo.People.Name = 'Paul' WHERE dbo.People.PeopleID=3
WAITFOR DELAY '00:02:00'
INSERT INTO dbo.People VALUES (4,'Robert','Davis', 'Rob',DEFAULT, DEFAULT)
WAITFOR DELAY '00:01:00'
UPDATE dbo.People
SET dbo.People.Name = 'Nik' WHERE dbo.People.PeopleID=4
WAITFOR DELAY '00:02:00'
UPDATE dbo.People
SET dbo.People.Name = 'Brian' WHERE dbo.People.PeopleID=2
WAITFOR DELAY '00:01:00'

1414

Use temporal tables (4/4)

© 2022 Copyright Genpact. All Rights Reserved.

SELECT * FROM dbo.People SELECT * FROM dbo.PeopleHistory

For more information, see:

https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/sql-2016-temporal-

tables-how-do-you-drop-a-temporal-table/ba-p/371177

ALTER TABLE [dbo].[People] SET (SYSTEM_VERSIONING = OFF)

To forcefully drop a temporal table

https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/sql-2016-temporal-tables-how-do-you-drop-a-temporal-table/ba-p/371177

1515

Use of Try… Catch and Error handling (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

Error handling in the SQL Server gives us control over the Transact-SQL code.

Handling errors using TRY…CATCH

BEGIN TRY
--code to try

END TRY
BEGIN CATCH

--code to run if an error occurs
--is generated in try
END CATCH

• ERROR_NUMBER: Returns the internal number of the error
• ERROR_STATE: Returns the information about the source
• ERROR_SEVERITY: Returns the information about anything from

informational errors to errors user of DBA can fix, etc.
• ERROR_LINE: Returns the line number at which an error

happened on
• ERROR_PROCEDURE: Returns the name of the stored procedure

or function
• ERROR_MESSAGE: Returns the most essential information and

that is the message text of the error

1616

Use of Try… Catch and Error handling (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

TRY…CATCH in a query with error numbers

1717

Use of Try… Catch and Error handling with custom error message

© 2022 Copyright Genpact. All Rights Reserved.

Use of ‘RAISEERROR’

BEGIN TRY
-- RAISERROR with severity 11-19 will cause execution to
-- jump to the CATCH block.
RAISERROR ('Error raised in TRY block.', -- Message text.

16, -- Severity.
1 -- State.
);

END TRY
BEGIN CATCH

DECLARE @ErrorMessage NVARCHAR(4000);
DECLARE @ErrorSeverity INT;
DECLARE @ErrorState INT;

SELECT
@ErrorMessage = ERROR_MESSAGE(),
@ErrorSeverity = ERROR_SEVERITY(),
@ErrorState = ERROR_STATE();

-- Use RAISERROR inside the CATCH block to return error
-- information about the original error that caused
-- execution to jump to the CATCH block.
RAISERROR (@ErrorMessage, -- Message text.

@ErrorSeverity, -- Severity.
@ErrorState -- State.
);

END CATCH;

Use of ‘THROW’

CREATE TABLE #TestRethrow
(ID INT PRIMARY KEY
);
BEGIN TRY

INSERT #TestRethrow(ID) VALUES(1);
-- Force error 2627, Violation of PRIMARY KEY constraint to
be raised.

INSERT #TestRethrow(ID) VALUES(1);
END TRY
BEGIN CATCH

DECLARE @msg VARCHAR(50)='Primery Key
error';

THROW 60000, @msg, 1;
END CATCH;

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-

catch-transact-sql?view=sql-server-2017

For more details on Try Catch and Error handling, visit:

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-2017

1818

Use of transactions (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

Transactions group a set of tasks into a single execution unit.

❖ COMMIT: to save the changes.

❖ ROLLBACK: to roll back the changes.

❖ SAVEPOINT: creates points within the groups of transactions in which to ROLLBACK.

❖ SET TRANSACTION: places a name on a transaction.

Transactional control commands

Only used with DML Commands, such as INSERT, UPDATE, and DELETE

1919

Use of transactions (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

How to use Transactions

BEGIN TRY
BEGIN TRANSACTION SCHEDULEDELETE

DELETE -- delete commands full SQL cut out
DELETE -- delete commands full SQL cut out
DELETE -- delete commands full SQL cut out

COMMIT TRANSACTION SCHEDULEDELETE
PRINT 'X rows deleted. Operation Successful Tara.' --calculation cut out.

END TRY

BEGIN CATCH
IF (@@TRANCOUNT > 0)
BEGIN

ROLLBACK TRANSACTION SCHEDULEDELETE

PRINT 'Error detected, all changes reversed'
END
SELECT

ERROR_NUMBER() AS ErrorNumber,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() AS ErrorState,
ERROR_PROCEDURE() AS ErrorProcedure,
ERROR_LINE() AS ErrorLine,
ERROR_MESSAGE() AS ErrorMessage

END CATCH

Use Save Point

SAVEPOINT SP1;
Savepoint created.
DELETE FROM CUSTOMERS WHERE ID=1;
1 row deleted.
SAVEPOINT SP2;
Savepoint created.
DELETE FROM CUSTOMERS WHERE ID=2;
1 row deleted.
SAVEPOINT SP3;
Savepoint created.
DELETE FROM CUSTOMERS WHERE ID=3;
1 row deleted.

Rollback to Save Point

ROLLBACK TO SP2;
Rollback complete.

Release Save Point

RELEASE SAVEPOINT SAVEPOINT_NAME;

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql?view=sql-server-ver15

SET TRANSACTION

SET TRANSACTION ISOLATION LEVEL <Isolationlevel_name>

https://www.c-sharpcorner.com/blogs/using-isolation-level-in-sql-transaction2

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql?view=sql-server-ver15
https://www.c-sharpcorner.com/blogs/using-isolation-level-in-sql-transaction2

2020

Use of JSON in stored procedures (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

Send the entire JSON text to database and parse it using the new OPENJSON function.

DECLARE @json nVARCHAR(max)='[
{ "id" : 2,"firstName": "Uday", "lastName": "Singh",
"age": 25, "dateOfBirth": "2007-03-25T12:00:00" },

{ "id" : 5,"firstName": "Anurag", "lastName": "Gupta",
"age": 35, "dateOfBirth": "2005-11-04T12:00:00" },

{ "id" : 7,"firstName": "Vinod", "lastName": "Mishra",
"age": 15, "dateOfBirth": "1983-10-28T12:00:00" },

{ "id" : 8,"firstName": "Arvind", "lastName": "Giri",
"age": 12, "dateOfBirth": "1995-07-05T12:00:00" },

{ "id" : 9,"firstName": "Rajat", "lastName": "Saxena",
"age": 37, "dateOfBirth": "2015-03-25T12:00:00" }

]'

SELECT *
FROM OPENJSON(@json)

WITH (id int, firstName nvarchar(50), lastName
nvarchar(50),

age int, dateOfBirth datetime2)

INSERT INTO Person (id, name, surname, age, dateOfBirth)
SELECT id, firstNAme, lastName, age, dateOfBirth
FROM OPENJSON(@json)
WITH (id int,

firstName nvarchar(50), lastName nvarchar(50),
age int, dateOfBirth datetime2)

https://www.codeproject.com/Articles/1087995/Inserting-JSON-Text-into-SQL-Server-Table

https://www.codeproject.com/Articles/1087995/Inserting-JSON-Text-into-SQL-Server-Table

2121

Use of JSON in stored procedures (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

Receive output in the form of JSON by using FOR JSON PATH.

DECLARE @text NVARCHAR(MAX)=
(
SELECT

fldIWfId
InputChannel,
SubmissionID,
UnderwriterID,
Underwriter,
Broker
FROM

VwCPR_GetALLSubmissionsDATAFromUWF
WITH(NOLOCK)

WHERE fldIWfId= 132878
FOR JSON PATH
)
SELECT @text AS

outputJson

2222

Getting accurate execution time in the SQL Server (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

Checking the time taken to execute an SQL statement is an effective way to

analyze SQL statements.

What to do if you want to get the accurate execution time up in milliseconds?

/* Switch on statistics time */
SET STATISTICS TIME ON;
/* Your SQL Statement */
SELECT * FROM sales.Invoices;
/* Switch off statistics time */
SET STATISTICS TIME OFF;
GO

2323

Getting accurate execution time in the SQL Server (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

Using Client Statistics

1. Go to Menu > Query >

Select Include client Statistics.

2. Execute your query.

3. In the results panel, note the new

tab Client Statistics.

4. On the Client Statistics tab, see

the execution time.

2424

Useful SQL functions (1/2)

© 2022 Copyright Genpact. All Rights Reserved.

SQL functions Use

TRANSLATE() TRANSLATE(string, characters, translations)

SELECT TRANSLATE('Monday', 'Monday', 'Sunday’) => 'Sunday'
SELECT TRANSLATE('3*[2+1]/{8-4}', '[]{}', '()()’); => 3*(2+1)/(8-4)

CONCAT() SELECT CONCAT('Shailendra','Kumar', 'Srivastava’) => ShailendraKumarSrivastava

CONCAT_WS() Adds two or more strings together with a separator.
CONCAT_WS(separator, string1, string2,, string_n)

SELECT CONCAT_WS('-', 'SQL', ' is', ' fun!’) => SQL- is- fun!

DATETIMEFROMPARTS() SELECT DATEFROMPARTS(2018, 10, 31) AS DateFromParts => 2018-10-31

EOMONTH() SELECT EOMONTH(‘2022-02-15’) => 2019-02-28

CHOOSE() SELECT CHOOSE(2, 'First', 'Second', 'Third’) => 'Second'

IIF() SELECT IIF(500<1000, 'YES', 'NO’) => ’Yes’

FORMAT FORMAT(value, format, culture)
DECLARE @d DATETIME = '02.16.2022';
SELECT FORMAT (@d, 'd', 'en-US') AS 'US English Result’ => 2/16/2022

SELECT FORMAT(123456789, '##-##-#####’) => 12-34-56789

2525

Useful SQL functions (2/2)

© 2022 Copyright Genpact. All Rights Reserved.

SQL functions Use

REPLICATE SELECT REPLICATE('Ok', 5) => OkOkOkOkOk

REVERSE SELECT REVERSE('Shailendra’) => ardneliahS

LAG() & LEAD SELECT Id,
LAG(Id) OVER(ORDER BY Id) prev_id,
LEAD(Id) OVER(ORDER BY Id) next_id
FROM #TempA

26

Thank you

© 2022 Copyright Genpact. All Rights Reserved.

